Phân tích đa thức thành nhân tử:
a) 9x2-12xy-20y-25
b) xy2-49x3-28x2-4x
c) x2-3x-2019.2022
phân tích các đa thức sau thành nhân tử:
a)3x-6x2y b)x3+22y+xy2-4x c) x2-6x+8
c: =(x-2)(x-4)
b: \(=x\left(x^2+2xy+y^2-4\right)\)
=x(x+y-2)(x+y+2)
Phân tích các đa thức sau thành nhân tử:
a. x2 +6x
b. 9x2 – 1.
b. x2+2xy – 9+ y2
c..
\(a,x^2+6x=x\left(x+6\right)\\ b,9x^2-1=\left(3x\right)^2-1^2=\left(3x-1\right)\left(3x+1\right)\\ c,x^2+2xy-9+y^2=\left(x^2+2xy+y^2\right)-9=\left(x+y\right)^2-3^2=\left(x+y-3\right)\left(x+y+3\right)\\ c,x^2-y^2-x+y=\left(x-y\right)\left(x+y\right)-\left(x-y\right)=\left(x-y\right)\left(x+y-1\right)\)
Phan tích đa thức thành nhân tử:
a) 3x+6y-12xy b) x2-2x+xy-2y
c) 5x2-5z2 d) x2-9+2x(x-3)
a/ \(3x+6y-12xy\)
\(=3\left(x+2y-4xy\right)\)
b/ \(x^2-2x+xy-2y\)
\(=x\left(x-2\right)+y\left(x-2\right)\)
\(=\left(x-2\right)\left(x+y\right)\)
c/ \(5x^2-5z^2\)
\(=5\left(x^2-z^2\right)\)
\(=5\left(x-z\right)\left(x+z\right)\)
d/ \(x^2-9+2x\left(x-3\right)\)
\(=\left(x-3\right)\left(x+3\right)+2x\left(x+3\right)\)
\(=\left(x+3\right)\left(3x-3\right)\)
\(=3\left(x+3\right)\left(x-3\right)\)
a) 3x+6y-12xy
=3(x+2y-4xy)
b)x²-2x+xy-2y=-2x-2y+(x²+xy)=-2(x+y)+x(x+y)=(x+y)(-2+x)
c)5x²-5z²=5(x²-z²)=5(x-z)(x+z)
d)x²-9+2x(x-3)=(x-3)(x+3)+2x(x-3)=(-3)((x+3)+2x)
Phân tích các đa thức sau thành nhân tử:
a. x2 +6x
b. 9x2 – 1.
c. x2+2xy – 9+ y2
d. x2 - y2 -x + y
\(a,x\left(x+6\right)\\ b,\left(9x-1\right)\left(9x+1\right)\\ c,\left(x+y\right)-3^2\\ =\left(x+y-3\right)\left(x+y+3\right)\\ d,\left(x-y\right)\left(x+y\right)-\left(x-y\right)\\ =\left(x-y\right)\left(x+y-1\right)\)
Bài 1 (2,0 điểm). Thực hiện các phép tính:
a) 2x2(3x – 5). b) (12x3y + 10x2y) : 2x2y.
Bài 2 (1,5 điểm). Phân tích đa thức thành nhân tử:
a) x2y + xy2. b) x2 – 2x + 1 – 4y2. c) x2 – 5x + 4.
Bài 3 (1,0 điểm). Tìm x biết:
a) x2 – x(x – 3) – 6 = 0. b) 5(x + 2) – x2 – 2x =
Bài 5 (3,5 điểm). Cho °ABC, A= 90. Vẽ AH ^ BC tại H. Biết AB = 15cm, BC = 25cm.
a) Tính AC và diện tích °ABC.
b) Từ H vẽ HM ^ AB tại M, HN ^ AC tại N. Chứng minh AMHN là hình chữ nhật.
c) Trên tia đối của tia AC lấy điểm D sao cho AD = AN. Chứng minh tứ giác ADMH là hình bình hành.
d) Gọi K là điểm đối xứng của B qua A. Gọi I, E lần luợt là trung điểm của AH và BH. Chứng minh CI ^ HK.
\(a\text{)}x^2y+xy^2=xy\left(x+y\right)\)
\(b\text{)}x^2-2x+1=\left(x-1\right)^2\)
\(c\text{)}x^2-5x+4=\left(x-1\right)\left(x-4\right)\)
Bài 1:
a: \(=6x^3-10x^2\)
b: \(=6x+5\)
Phân tích đa thức thành nhân tử:
a) 81x5-x3
b) 9x2y-12xy+4y
c) (5-x)2-16(x-2)2
d) 9x2-y2-21x-7y
e) -y2+8y+9x2-16
f) 5x2-4x-1
g) (x+7)(x+9)-17
h) x(x+2)(x+4)(x+6)+15
a: \(81x^5-x^3\)
\(=x^3\left(81x^2-1\right)\)
\(=x^3\left(9x-1\right)\left(9x+1\right)\)
b: \(9x^2y-12xy+4y\)
\(=y\left(9x^2-12x+4\right)\)
\(=y\left(3x-2\right)^2\)
c: \(\left(5-x\right)^2-16\left(x-2\right)^2\)
\(=\left(x-5\right)^2-\left(4x-8\right)^2\)
\(=\left(x-5-4x+8\right)\left(x-5+4x-8\right)\)
\(=-3\left(x-1\right)\left(5x-13\right)\)
d: Ta có: \(9x^2-y^2-21x-7y\)
\(=\left(3x-y\right)\left(3x+y\right)-7\left(3x+y\right)\)
\(=\left(3x+y\right)\left(3x-y-7\right)\)
e: Ta có: \(-y^2+8y-16+9x^2\)
\(=-\left(y^2-8y+16-9x^2\right)\)
\(=-\left(y-4-3x\right)\left(y-4+3x\right)\)
f: Ta có: \(5x^2-4x-1\)
\(=5x^2-5x+x-1\)
\(=5x\left(x-1\right)+\left(x-1\right)\)
\(=\left(x-1\right)\left(5x+1\right)\)
Bài 7: Phân tích đa thức thành nhân tử:
a, 4x2 - 1
b, x2 -3y2
c, 9x2 -1/4
d, (x-y)2 -4
e, 9 - (x-y)2
f, (x2 + 4)2 - 16x2
a) \(4x^2-1\)
\(=\left(2x\right)^2-1^2\)
\(=\left(2x-1\right)\left(2x+1\right)\)
b) \(x^2-3y^2\)
\(=x^2-\left(y\sqrt{3}\right)^2\)
\(=\left(x-y\sqrt{3}\right)\left(x+y\sqrt{3}\right)\)
c) \(9x^2-\dfrac{1}{4}\)
\(=\left(3x\right)^2-\left(\dfrac{1}{2}\right)^2\)
\(=\left(3x-\dfrac{1}{2}\right)\left(3x+\dfrac{1}{2}\right)\)
d) \(\left(x-y\right)^2-4\)
\(=\left(x-y\right)^2-2^2\)
\(=\left(x-y-2\right)\left(x-y+2\right)\)
e) \(9-\left(x-y\right)^2\)
\(=3^2-\left(x-y\right)^2\)
\(=\left(3+x-y\right)\left(3-x+y\right)\)
f) \(\left(x^2+4\right)^2-16x^2\)
\(=\left(x^2+4\right)^2-\left(4x\right)^2\)
\(=\left(x^2-4x+4\right)\left(x^2+4x+4\right)\)
\(=\left(x-2\right)^2\left(x+2\right)^2\)
Phân tích các đa thức sau thành nhân tử:
a/ 2x3 + 3x2 + 2x +3 b/ x2 – x – 12 c/ 4x2 –( x2 + 1)2
d/ 4xy2 – 12x2y + 8xy e/ x2 + x – 6 f/ x3 + 2x2y + xy2 – 4xz2
g/ x3 – 2x2y + xy2 – 25x h/ x2 – 2x – 3 i/ x3 – 3x2 – 9x + 27
a: \(=x^2\left(2x+3\right)+\left(2x+3\right)\)
\(=\left(2x+3\right)\left(x^2+1\right)\)
b: \(=\left(x-4\right)\left(x+3\right)\)
e: =(x+3)(x-2)
a) \(=x^2\left(2x+3\right)+\left(2x+3\right)=\left(2x+3\right)\left(x^2+1\right)\)
b) \(=x\left(x-4\right)+3\left(x-4\right)=\left(x-4\right)\left(x+3\right)\)
c) \(=\left(2x\right)^2-\left(x^2+1\right)^2=\left(x^2-2x+1\right)\left(x^2+2x+1\right)=\left(x-1\right)^2\left(x+1\right)^2\)
d) \(=4xy\left(y-3x+2\right)\)
e) \(=x\left(x-2\right)+3\left(x-2\right)=\left(x-2\right)\left(x+3\right)\)
f) \(=x\left(x^2+2xy+y^2-4z^2\right)=x\left[\left(x+y\right)^2-4z^2\right]=x\left(x+y-2z\right)\left(x+y+2z\right)\)
g) \(=x\left(x^2-2xy+y^2-25\right)=x\left[\left(x-y\right)^2-25\right]=x\left(x-y-5\right)\left(x-y+5\right)\)
h) \(=x\left(x+1\right)-3\left(x+1\right)=\left(x+1\right)\left(x-3\right)\)
i) \(=x^2\left(x-3\right)-9\left(x-3\right)=\left(x-3\right)\left(x^2-9\right)=\left(x-3\right)^2\left(x+3\right)\)
Phân tích các đa thức sau thành nhân tử:
a) 9x2-121
b) (3x+1)2-(x-2)2
C) (2x+1)2-64
Giải chi tiết giúp mình nha.Cảm ơn.
\(a,=\left(3x-11\right)\left(3x+11\right)\\ b,=\left(3x+1-x+2\right)\left(3x+1+x-2\right)\\ =\left(2x+3\right)\left(4x-1\right)\\ c,=\left(2x+1-8\right)\left(2x+1+8\right)=\left(2x-7\right)\left(2x+9\right)\)