cmr \(\dfrac{12n+1}{30n+2}\) là phân số tối giản
CMR 12n+1/30n+2 là phân số tối giản?
Gọi \(d=ƯCLN\left(12n+1;30n+2\right)\)
\(\Rightarrow\hept{\begin{cases}12n+1⋮d\\30n+2⋮d\end{cases}\hept{\begin{cases}5\left(12n+1\right)⋮d\\2\left(30n+2\right)⋮d\end{cases}\hept{\begin{cases}60n+5⋮d\\60n+4⋮d\end{cases}}}}\)
\(\Rightarrow\left(60n+5\right)-\left(60n-4\right)⋮d\)
\(\Rightarrow1⋮d\Leftrightarrow d=1\)
\(\Rightarrow\frac{12n+1}{30n+2}\)là phân số tối giản
Vậy ...
cmr 12n+1/30n+2 là phân số tối giản
CMR (12n+1)/(30n+2) là phân số tối giản
gọi d là ƯCLN của 12n+1 và 30n+2.
suy ra: 12n+1 chia hết cho d; 5x(12n+1) chia hết cho d ; 60n+5 chia hết cho d
30n+2chia hết cho d:2x(30n+2) chia hết cho d ; 60n+4 chia hết cho d
suy ra: (60n+5) - (60n+4) chia hết cho d
suy ra : 1 chia hết cho d
suy ra : d= 1
vậy 12n+1/30n+2 là ps tối giản
Chứng tỏ rằng \(\dfrac{12n+1}{30n+2}\) là phân số tối giản
đặt (12n+1,30n+2)=d
=>12n+1 chia hết cho d nên 5*(12n+1) chia hết cho d
=>30n+2 chia hết cho d nên 2*(30n+2) chia hết cho d
ta có : 5*(12n+1)-2*(30n+2) chia hết cho d
= 1 chia hết cho d
=> d=1
=>(12n+1,30n+2)=1
=>đpcm
gọi d là ucln(12n+1;30n+2)
ta có : 12n+1 chia hết d
⇒60n + 5⋮d (1)
mà 30n+2⋮ d
⇒60n + 4 ⋮ d (2)
từ (1) và (2) ta có:
⇒60n+5 -(60n+4)⋮d
⇒60n+5-60n-4⋮d
⇒1⋮d⇒d=1
vì ucln(12n+1;30n+2)=1
⇒12n+1/30n+2 là phân số tối giản
vậy 12n+1/30n+2 là phân số tối giản
Gọi d là UCLN của 12n+1 và 30n+2
Vậy 12n+1 và 30n+2 chia hết cho d
hay: 60n +5 và 60n+4 chia hết cho d
nên: (60n + 5) - (60n+4) = 1 chia hết do d. Vậy d lớn nhất bằng 1
hay 12n+1 và 30n+2 là 2 số nguyên tố cùng nhau
Kết luận: \(\dfrac{12n+1}{30n+2}\) là phân số tối giản
CMR 12n+1/30n+2 là phân số tối giản
Gọi d là (30n+2 ; 12n+1) (1) => 30n+2 chia hết cho d => 2(30n+2) chia hết cho d hay 60n+4 chia hết cho d
Tương tự ta chứng minh được 5(12n+1) chia hết cho d => 60n+5 chia hết cho d
do đó (60n+5) - (60n+4) chia hết cho d hay 1 chia hết cho d => d=1 hoặc -1 (2)
Từ (1) và (2) => (30n+2 ; 12n+1) = 1 hoặc -1 do đó phân số 12n+1 trên 30n+2 là phân số tối giản .
Gọi UCLN(12n+1,30n+2)=d
Ta có:12n+1 chia hết cho d
30n+2 chia hết cho d
=>5(12n+1) chia hết cho d
2(30n+2) chia hết cho d
=>60n+5 chia hết cho d
60n+4 chia hết cho d
=>(60n+5)-(60n+4) chia hết cho d
=>1 chia hết cho d
=>d=1
Vậy phân số \(\frac{12n+1}{30n+2}\) tối giản
Chứng minh các phân số sau là phân số tối giản
\(A=\dfrac{12n+1}{30n+2}\) \(B=\dfrac{14n+17}{21n+25}\)
Chứng minh các phân số sau là phân số tối giản với mọi số nguyên n: A= \(\dfrac{12n+1}{30n+2}\)
Gọi \(d\inƯC\left(12n+1;30n+2\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}12n+1⋮d\\30n+2⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}60n+5⋮d\\60n+4⋮d\end{matrix}\right.\)
\(\Leftrightarrow60n+5-60n-4⋮d\)
\(\Leftrightarrow1⋮d\)
\(\Leftrightarrow d\inƯ\left(1\right)\)
\(\Leftrightarrow d\in\left\{1;-1\right\}\)
\(\LeftrightarrowƯCLN\left(12n+1;30n+2\right)=1\)
hay phân số \(A=\dfrac{12n+1}{30n+2}\) là phân số tối giản(đpcm)
Gọi d∈ƯC(12n+1;30n+2)d∈ƯC(12n+1;30n+2)
⇔⎧⎨⎩12n+1⋮d30n+2⋮d⇔⎧⎨⎩60n+5⋮d60n+4⋮d⇔{12n+1⋮d30n+2⋮d⇔{60n+5⋮d60n+4⋮d
⇔60n+5−60n−4⋮d⇔60n+5−60n−4⋮d
⇔1⋮d⇔1⋮d
⇔d∈Ư(1)⇔d∈Ư(1)
⇔d∈{1;−1}⇔d∈{1;−1}
⇔ƯCLN(12n+1;30n+2)=1⇔ƯCLN(12n+1;30n+2)=1
vậy
CMR \(\frac{12n+1}{30n+2}\)là phân số tối giản
CMR
\(\frac{12n+1}{30n+2}\)là phân số tối giản
Gọi d = ( 12n+1 , 30n + 2)
Ta có: 12n+ 1 chia hết cho d 5(12n +1) chia hết cho d 60n +5 chia hết cho d
=> =>
30n+ 2 chia hết cho d 2(30n + 2 ) chia hết cho d 60n ++ 4 chia hết cho d
=> (60n +5 ) - ( 60n + 4 ) chia hết cho d => 1 chia hết ch d => d = 1
Vậy phân số đó tối giản
k mình nha