cho x là số thực dương.tìm giá trị nhỏ nhất của biểu thức
P=4\(x^2-x+\dfrac{3}{4x}+2017\)
Cho x là số thực dương. Tìm giá trị nhỏ nhất của biểu thức P= 4x2-x+\(\frac{3}{4}x+2017.\)
giải hộ mình đi mình kém mấy bài Min Max lắm
Đưa về tổng bình phương thôi bạn
\(P=4x^2-\frac{1}{4}x+2017=\left(4x^2-\frac{1}{4}x+\frac{1}{256}\right)+2017-\frac{1}{256}\)
\(=\left(2x-\frac{1}{16}\right)^2+2017-\frac{1}{256}\ge2017-\frac{1}{256}\)
Do đó \(P_{min}=2017-\frac{1}{256}\) tại \(\left(2x-\frac{1}{16}\right)^2=0\) \(\Leftrightarrow x=\frac{1}{32}\)
a) Tìm giá trị nhỏ nhất của biểu thức: S= \(\dfrac{5x^4+4x^2+10}{x^4+2}\)
b) Tìm giá trị lớn nhất của biểu thức: T=\(\dfrac{2x^4-4x^2+8}{x^4+4}\)
c) Cho a là hằng số và a>0. Tìm giá trị nhỏ nhất của biểu thức: M=\(\dfrac{8y^8+2a\left(y-3\right)^2+2a^2}{4y^8+a^2}\)
Cho x,y là hai số thực dương thỏa. mãn x+y=5 Giá trị nhỏ nhất của biểu thức P=\(\dfrac{4x+y}{xy}-\dfrac{2x-y}{4}\)
Bạn kiểm tra lại đề bài, với biểu thức thế này thì không thể tìm được điểm rơi (nó là nghiệm của 1 pt bậc 4 hệ số rất xấu ko thể giải được)
Với x là số thực,tìm giá trị nhỏ nhất của các biểu thức sau:
1, A = 2x^2 + 4x + 1
2, B = 3x - x^2 + 4
3, C = 8x - 4x^2
4, D = \(\dfrac{1}{4x^2-4x+5}\)
HELPPPPP Me T.T
\(A=2x^2+4x+1=2\left(x^2+2x+1\right)-1=2\left(x+1\right)^2-1\ge-1\)
\(A_{min}=-1\) khi \(x=-1\)
Câu B chỉ có max, ko có min
\(B=-x^2+3x+4=-\left(x^2-3x+\dfrac{9}{4}\right)+\dfrac{25}{4}=-\left(x-\dfrac{3}{2}\right)^2+\dfrac{25}{4}\le\dfrac{25}{4}\)
\(B_{max}=\dfrac{25}{4}\) khi \(x=\dfrac{3}{2}\)
Câu C cũng chỉ có max, không có min
\(C=-4x^2+8x=-4\left(x^2-2x+1\right)+4=-4\left(x-1\right)^2+4\le4\)
\(C_{max}=4\) khi \(x=1\)
Câu D cũng chỉ có max, không có min
\(D=\dfrac{3}{4x^2-4x+1+4}=\dfrac{3}{\left(2x-1\right)^2+4}\le\dfrac{3}{4}\)
\(C_{max}=\dfrac{3}{4}\) khi \(x=\dfrac{1}{2}\)
(4 câu có 3 câu sai đề)
Với x là số thực,tìm giá trị nhỏ nhất của các biểu thức sau:
1, A = 2x^2 - 8x + 1
2, B = x^2 + 3x + 2
3, C = 4x^2 - 8x
4, D = \(\dfrac{1}{5−x^2−2x}\)
\(A=2\left(x^2-4x+4\right)-7=2\left(x-2\right)^2-7\ge-7\)
Dấu \("="\Leftrightarrow x=2\)
\(B=\left(x^2+3x+\dfrac{9}{4}\right)-\dfrac{1}{4}=\left(x+\dfrac{3}{2}\right)^2-\dfrac{1}{4}\ge-\dfrac{1}{4}\)
Dấu \("="\Leftrightarrow x=-\dfrac{3}{2}\)
\(C=4\left(x^2-2x+1\right)-4=4\left(x-1\right)^2-4\ge-4\)
Dấu \("="\Leftrightarrow x=1\)
\(D=\dfrac{1}{-\left(x^2+2x+1\right)+6}=\dfrac{1}{-\left(x+1\right)^2+6}\ge\dfrac{1}{6}\)
Dấu \("="\Leftrightarrow x=-1\)
\(A=2\left(x^2-4x+4\right)-7=2\left(x-2\right)^2-7\ge-7\)
\(A_{min}=-7\) khi \(x=2\)
\(B=\left(x^2+3x+\dfrac{9}{4}\right)-\dfrac{1}{4}=\left(x+\dfrac{3}{2}\right)^2-\dfrac{1}{4}\ge-\dfrac{1}{4}\)
\(B_{min}=-\dfrac{1}{4}\) khi \(x=-\dfrac{3}{2}\)
\(C=4\left(x^2-2x+1\right)-4=4\left(x-1\right)^2-4\ge-4\)
\(C_{min}=-4\) khi \(x=1\)
Biểu thức D không tồn tại cả max lẫn min
1.
$A=2x^2-8x+1=2(x^2-4x+4)-7=2(x-2)^2-7$
Vì $(x-2)^2\geq 0$ với mọi $x\in\mathbb{R}$
$\Rightarrow A\geq 2.0-7=-7$
Vậy $A_{\min}=-7$ khi $x-2=0\Leftrightarrow x=2$
2.
$B=x^2+3x+2=(x^2+3x+1,5^2)-0,25=(x+1,5)^2-0,25\geq 0-0,25=-0,25$
Vậy $B_{\min}=-0,25$ khi $x=-1,5$
3.
$C=4x^2-8x=(4x^2-8x+4)-4=(2x-2)^2-4\geq 0-4=-4$
Vậy $C_{\min}=-4$ khi $2x-2=0\Leftrightarrow x=1$
4. Để $D_{\min}$ thì $5-x^2-2x$ là số thực âm lớn nhất
Mà không tồn tại số thực âm lớn nhất nên không tồn tại $x$ để $D_{\min}$
Với x là số thực,tìm giá trị nhỏ nhất của các biểu thức sau:
1, A = 2x^2 - 8x + 1
2, B = x^2 + 3x + 2
3, C = 4x^2 - 8x
4, D = \(\dfrac{1}{5-x^2-2x}\)
A\(=2x^2-8x+1\)
=2x(x-4)+1≥1
Min A=1 ⇔x=4
B=\(x^2+3x+2\)
\(=\left(x^2+2.x.\dfrac{3}{2}+\dfrac{9}{4}\right)-\dfrac{1}{4}\)
\(=\left(x+\dfrac{3}{2}\right)^2-\dfrac{1}{4}\)≥\(-\dfrac{1}{4}\)
Min B=-1/4⇔x=-3/2
C=\(4x^2-8x\)
=\(\left(\left(2x\right)^2-2x.4+16\right)-16\)
=(2x-4)^2 -16≥-16
Min C=-16 ⇔x=2
D=\(\dfrac{1}{-\left(x^2-2x+1\right)+6}\)
=\(\dfrac{1}{-\left(x-1\right)^2+6}\)≥\(\dfrac{1}{6}\)
Min D=1/6 ⇔x=1
Cho x y z là 3 số thực tuỳ ý tìm giá trị nhỏ nhất cửa biểu thức M==x+Y+z-yz-4x-3y+2017
Cho biểu thức A=(\(\dfrac{x^2}{x^3-4x}+\dfrac{6}{6-3x}+\dfrac{1}{x+2}\)):(x-2 + \(\dfrac{10-x^2}{x+2}\))
a)Rút gọn A
b)Tính giá trị x của A với giá trị của x thỏa mãn |2x-1|=3
c) Tìm x để (3-4x).A<3
d) Tìm giá trị nhỏ nhất của biểu thức B=(8-\(^{x^3}\)).A+x
1) chứng minh giá trị của biểu thức A phụ thuộc vào biến x
A=(3x-5)(2x+11)-(2x+3)(3x+7)
2) tìm số thực a để x3 - 3x2 + 5x +a chia hết cho x -2
3)tìm giá trị nhỏ nhất của biểu thức :A = 4x2 - 8x +2017