Cho a=111...13(n số 1) và b=111...14(n số 1)
CMR: ab+1 là số chính phương
4. Cho A=11...111 ( 2018 số 1 ), B=111...13 ( 2017 số 1 )
CMR ab+1 là số chính phương
\(ab+1=\underbrace{11....11}_{2018c/s1}.\underbrace{11....13}_{2017c/s1}+1\)
\(\Leftrightarrow ab+1=(\underbrace{11....10}_{2017c/s1}+1).(\underbrace{11....10}_{2017c/s1}+3)+1\)
\(\Leftrightarrow ab+1=\underbrace{11....10^2}_{2017c/s1}+4.\underbrace{11....10}_{2017c/s1}+3+1\)
\(\Leftrightarrow ab+1=\underbrace{11....10^2}_{2017c/s1}+4.\underbrace{11....10}_{2017c/s1}+4\)
\(\Leftrightarrow ab+1=(\underbrace{11....10}_{2017c/s1}+2)^2\) là số chính phương
Vậy...
C áp dụng hằng đẳng thức : \(x^2+2xy+y^2=\left(x+y\right)^2\)
cho a=111....19(n số 1); b=111....19(n số 1). CM: ab+4 là số chính phương
Cmr các số sau là số chính phương
a, A=111...1(n số 1) 222...2(n số 2)5
b,B=111...1(n số 1) 333..3(n số 3) + 222...2(n số 2) 38
Cần gấp ạ:(
Cmr số B=111...155...56 là số chính phương (B có n chữ số 1 và n-1 chữ số 5)
Cho \(a=\frac{111....111}{nchữsố1}\)và \(b=\frac{100...005}{n-1chữsố0}\)n>1
CMR a.b+1 là số chính phương
Cho số a = 111...1 ( n chữ số 1 ), b = 100...05 ( n-1 chữ số 0 ) với n là số tự nhiên, n > 1
CMR a.b + 1 là số chính phương
Ta có : b = 100...05 ( n-1 chữ số 0 ) = 999...9 ( n chữ số 9 ) + 6 = 9.111...1 ( n chữ số 1 ) + 6 = 9.a + 6
=> a.b + 1 = a.( 9.a + 6 )
= 9.a2 + 6.a + 1
= 9.a2 + 3.a + 3.a + 1
= 3.a.( 3.a + 1 ) + ( 3.a + 1 )
= ( 3.a + 1 ) . ( 3.a + 1 )
= ( 3.a + 1 )2 ( đpcm )
Vậy bài toán được chứng minh !
C.ơn nx bn đã tk cho mk ♥
Theo đề bài ra ta có :
b = 100...05 ( n -1 chữ số 0 ) = 999...9 ( n chữ số 9) + 6 = 9 . 111...1 ( n chữ số 1 ) + 6 = 9 . a + 6
\(\Rightarrow\) a . b + 1 = a . ( 9 . a + 6 )
= 9 . a2 + 6 . a + 1
= 9 . a2 + 3 . a + 3 . a + 1
= 3. a . ( 3 . a + 1 ) + ( 3 . a + 1 )
= ( 3 . a + 1 ) . ( 3 . a + 1 )
= ( 3 . a + 1 )2
\(\Rightarrow\left(Đpcm\right)\)
Cho a = 111...11 (2n chữ số 1); b = 444...44(n chữ số 4). CMR : a+b+1 là một số chính phương
a+b+1 = 111..11(2n) +444...44(n) + 1 =111...11(n).10n + 111...11(n) +4.111..11(n) +1
= 111...11(n).(10n-1) +6.111..11(n) +1
= 333...332(n) +2.333...33(n) +1 = ( 333.....3(n)+1)2 dpcm
Cho a = 111...11 (2n chữ số 1); b = 444...44(n chữ số 4). CMR : a+b+1 là một số chính phương
Đặt 111....1<n chữ số 1> là k
Ta có: 111......1<2n chữ số 1>=k.10^n + k
Vì :10^n = 9k + 1
11......1<2n chữ số 1>= k.<9k + 1> +k = 9k^2+k+k = 9k^2 + 2k
Ta có 444........4<n chữ số 4>=4k
vậy a+b+1= 9k^2 +2k+4k+1 = <3k>^2 +2.3k.1 +1^2 = <3k +1>^2
Vậy a+b+1 là một số chính phương
Đặt 111....1<n chữ số 1> là k
Ta có: 111......1<2n chữ số 1>=k.10^n + k
Vì :10^n = 9k + 1
11......1<2n chữ số 1>= k.<9k + 1> +k = 9k^2+k+k = 9k^2 + 2k
Ta có 444........4<n chữ số 4>=4k
vậy a+b+1= 9k^2 +2k+4k+1 = <3k>^2 +2.3k.1 +1^2 = <3k +1>^2
Vậy a+b+1 là một số chính phương
mjn nghj rang chac mjn da tra loj sai roi
Cho A=111...1112
B=111...1114
CMR AB+1 là số chính phương