cho x,y,z là các số dương thoả mãn x+y+z < hoặc = 6
tìm điều kiện cmr 1/x+1/y+1/z > hoặc = 3/2
cho x,y,z là các số dương thỏa mãn điều kiện x+y+z=2.CMR: (x^2/y+z)+(y^2/z+x)+(z^2/x+y) lớn hơn hoặc bằng 1
\(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\ge\frac{\left(x+y+x\right)^2}{y+z+z+x+x+y}=\frac{x+y+x}{2}=1\)
Dấu ' =' xảy ra khi \(x=y=z=\frac{2}{3}\)
1 a) Tìm các giá trị x,y,z,t thoả mãn các điều kiện sau:
x^2+y^2+z^2+t^2=1 và xy+yz+tx=1
b) Tìm các giá trị x,y,z thoả mãn các điều kiện : x+y+z=6 và x^2+y^2+z^2=12
cho các số dương x, y, z thoả mãn x+y+z nhỏ hơn hoặc bằng 3 tìm giá trị lớn nhất của biểu thức:
\(A=\sqrt{1+X^2}+\sqrt{1+Y^2}+\sqrt{1+Z^2}+2\left(\sqrt{X}+\sqrt{Y}+\sqrt{Z}\right)\)
Huhu
tui
moi
hoc
lop
5
chua
bit
lam
lop
9
kho
qua
hihi
HONG BIET LAM
?
?
?
?
?
?
?
?
?
?
??
??
??
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
??
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
cho x,y,z dương thoả mãn điều kiện : (x+y)(y+z)(z+x)=8xyz.
CMR x=y=z
Lần lượt áp dụng bất đẳng thức cô-si ta có: \(x+y\ge2\sqrt{xy};y+z\ge2\sqrt{yz};z+x\ge2\sqrt{zx}.\)
Suy ra: \(\left(x+y\right)\left(y+z\right)\left(z+x\right)\ge2\sqrt{xy}.2\sqrt{yz}.2\sqrt{zx}=8xyz.\)
Dấu bằng xảy ra khi x = y = z.
Cho các số thực dương thoả mãn: \(x\sqrt{1-y^2}+y\sqrt{1-z^2}+z\sqrt{1-x^2}=\dfrac{3}{2}\)
Cmr: \(x^2+y^2+z^2=\dfrac{3}{2}\)
Áp dụng BĐT Côsi cho 2 số dương x và \(\sqrt{1-y^2}\) có:
x\(\sqrt{1-y^2}\) ≤ \(\dfrac{x^2+1-y^2}{2}\)
Tương tự: \(y\sqrt{1-z^2}\le\dfrac{y^2+1-z^2}{2}\); \(z\sqrt{1-x^2}\le\dfrac{z^2+1-x^2}{2}\)
=> \(x\sqrt{1-y^2}+y\sqrt{1-z^2}+z\sqrt{1-x^2}\le\dfrac{x^2+1-y^2+y^2+1-z^2+z^2+1-x^2}{2}=\dfrac{3}{2}\)
Dấu "=" xảy ra ⇔ x = y = z = \(\dfrac{\sqrt{2}}{2}\) => x2 = y2 = z2 = \(\dfrac{1}{2}\)
=> x2 + y2 + z2 = 3x2 = 3.\(\dfrac{1}{2}\) = \(\dfrac{3}{2}\)
Cho x,y,z là các số dương thỏa mãn các điều kiện \(\dfrac{x}{y}=\dfrac{y}{z}=\dfrac{z}{x}\) và \(\left|x+y\right|=\left|z-1\right|\). Tìm x,y,z
Lời giải:
Áp dụng TCDTSBN:
$\frac{x}{y}=\frac{y}{z}=\frac{z}{x}=\frac{x+y+z}{y+z+x}=1$
$\Rightarrow x=y; y=z; z=x\Rightarrow x=y=z$
Khi đó:
$|x+y|=|z-1|$
$\Leftrightarrow |2x|=|x-1|$
$\Rightarrow 2x=x-1$ hoặc $2x=-(x-1)$
$\Rightarrow x=-1$ hoặc $x=\frac{1}{3}$ (đều thỏa mãn)
Vậy $(x,y,z)=(-1,-1,-1)$ hoặc $(\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$
Cho x, y, z là các số thực thoả mãn điều kiện \(\dfrac{3x^2}{2}\)+ y2 + z2 +yz = 1. Tìm GTNN và GTLN của biểu thức A = x + y + z
\(\Leftrightarrow3x^2+2y^2+2z^2+2yz=2\)
\(\Rightarrow2\ge3x^2+2y^2+2z^2+y^2+z^2\)
\(\Leftrightarrow2\ge3\left(x^2+y^2+z^2\right)\)
Có: \(\left(x+y+z\right)^2\le3\left(x^2+y^2+z^2\right)\le2\)
\(\Rightarrow\)\(A^2\le2\) \(\Leftrightarrow A\in\left[-\sqrt{2};\sqrt{2}\right]\)
minA=-1\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x+y+z=-\sqrt{2}\\x=y=z\end{matrix}\right.\) \(\Rightarrow x=y=z=-\dfrac{\sqrt{2}}{3}\)
maxA=1\(\Leftrightarrow\left\{{}\begin{matrix}x+y+z=\sqrt{2}\\x=y=z\end{matrix}\right.\) \(\Rightarrow x=y=z=\dfrac{\sqrt{2}}{3}\)
Cho các số dương x, y, z thỏa mãn điều kiện \(x^2+y^2+z^2=1\).
CMR \(\frac{x^3}{y+2z}+\frac{y^3}{z+2x}+\frac{z^3}{x+2y}\ge\frac{1}{3}\)
Ta có: \(\frac{x^3}{y+2z}+\frac{y^3}{z+2x}+\frac{z^3}{x+2y}=\frac{x^4}{xy+2xz}+\frac{y^4}{yz+2yx}+\frac{z^4}{zx+2zy}\)
Áp dụng BĐT Cauchy Schwarz, ta có:
\(=\frac{x^4}{xy+2xz}+\frac{y^4}{yz+2yx}+\frac{z^4}{zx+2zy}\ge\frac{\left(x^2+y^2+z^2\right)^2}{3\left(xy+yz+zx\right)}\ge\frac{\left(x^2+y^2+z^2\right)^2}{3\left(x^2+y^2+z^2\right)}=\frac{1}{3}\)
=> ĐPCM
Dấu "=" xảy ra khi: \(x=y=z=\frac{1}{\sqrt{3}}\)
Áp dụng BĐT Cosi cho 2 số dương, ta có:
\(\frac{9x^3}{y+2z}+x\left(y+2z\right)\ge6x^2;\frac{9y^3}{z+2x}+y\left(z+2x\right)\ge6y^2;\frac{9z^3}{x+2y}+z\left(x+2y\right)\ge6z^3\)
Lại có \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\Rightarrow x^2+y^2+z^2\ge xy+yz+zx\)
Do đó \(\frac{9x^3}{y+2z}+\frac{9y^3}{z+2x}+\frac{9z^3}{x+2y}+3\left(xy+yz+zx\right)\ge6\left(x^2+y^2+z^2\right)\)
\(\Leftrightarrow\frac{9x^3}{y+2z}+\frac{9y^3}{z+2x}+\frac{9z^3}{x+2y}\ge6\left(x^2+y^2+z^2\right)-3\left(xy+yz+zx\right)\ge3\left(x^2+y^2+z^2\right)\)
\(\Leftrightarrow\frac{x^3}{y+2z}+\frac{y^3}{z+2x}+\frac{z^3}{x+2y}\ge\frac{x^2+y^2+z^2}{3}=\frac{1}{3}\)
Dấu "=" xảy ra <=> \(x=y=z=\frac{1}{\sqrt{3}}\)
Cho các số thực dương x,y,z thỏa mãn điều kiện:
\(x\sqrt{1-y^2}+y\sqrt{1-z^2}+z\sqrt{1-x^2}=\frac{3}{2}\)
CMR : \(x^2+y^2+z^2=\frac{3}{2}\)
Ta có x√(1-y2)<= (x2 + 1 - y2)/2
y√(1-z2)<= (y2 +1 - z2)/2
z√(1- x2)<= (z2 + 1 - x2)/2
=>x√(1-y2) +y√(1-z2)z+√(1- x2)<=3/2
Đấu đẳng thức xảy ra khi: x2 = 1 - y2
y2 = 1-z2
z2 = 1- x2
Cộng vế theo vế ta được điều phải chứng minh