Cho HCN ABCD . AB = a . M là trung điểm của AB . Kẻ Mx vuông góc với MD ; Mx cắt BC tại E .
a) Tính AD.BE theo a
b) CM tam giác DAM đồng dạng với tam giác DME
c) CM DM là p/giác của góc ADE
Cho hcn abcd. M là trung điểm bc. Ma vuông góc với md và chu vi hcn là 36cm . tính ab , ad
(tự vẽ hình nha)
a,Ta có AM+MB=AB
NC+CD=DC
mà AB=CD(ABCD là HCN)
AM = NC (gt)
=> MB=DN (1)
Ta lại có AB//DC nên MB//DN (2)
Từ (1) và (2) => MBND là HBH
b,ta có : P là trung điểm AB
K là trung điểm AH
=>PK là đường trung bình tam giác AHB
=PK//BH (*)
mà BH//DM (MBND là HBH) (**)
từ (*) và (**) => PK//DM (ĐPCM)
c,do PK là đường trung bình
=>PK=1/2BH
=>PK = BH/2 = 6/2 =3cm
P là trung điểm AB
=> AP = 1/2AB = AB/2 = 10/2 = 5cm
ta có BH⊥AC mà BH//PK => AC⊥PK
=>△APK vuông tại K
S△APK là = 1/2AK.KP = 1/2.5.3 = 7,5
phần d mình chưa nghĩ ra
1) cho hình thang ABCD có AB//CD;AB>CD;AC vuông góc với BD.Trên cạnh đáy AB lấy điểm M sao cho AM bằng độ dài đường trung bình của hình thang ABCD .CM:AC là tia phân giác góc A
2)Cho hình thang ABCD có góc A=góc B=90 độ ;BC=2AD=2AB .Gọi M là 1 điểm trên đáy nhỏ AB kẻ Mx vuông với MB .Mx cắt CD tại N.CM:MB=MN
Cho hình thang vuông ABCD có AB=AD ; BD vuông góc với BC M thuộc AB , kẻ Mx vuông góc với MD , Mx cắt BC tại E
Cho hình thang vuông ABCD có: AB//CD; góc A=90 độ; AB=AD; CD=2AB. Lấy điểm M trên cạnh AB, kẻ tia Mx vuông góc với AD cắt cạnh BC tại N. Chứng minh MD=MN.
a:
Sửa đề: AB=6cm
ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(BC^2=6^2+8^2=100=10^2\)
=>BC=10(cm)
ΔABC vuông tại A
mà AM là đường trung tuyến
nên \(MA=MB=MC=\frac{BC}{2}=\frac{10}{2}=5\left(\operatorname{cm}\right)\)
b: Xét ΔABC có
M,E lần lượt là trung điểm của BC,CA
=>ME là đường trung bình của ΔABC
=>ME//AB
=>ME⊥AC tại E
Xét tứ giác ADME có \(\hat{ADM}=\hat{AEM}=\hat{DAE}=90^0\)
nên ADME là hình chữ nhật
Xét tứ giác AMCK có
E là trung điểm chung của AC và MK
=>AMCK là hình bình hành
Hình bình hành AMCK có MA=MC
nên AMCK là hình thoi
c: Gọi O là giao điểm của AM và DE
ADME là hình chữ nhật
=>AM cắt DE tại trung điểm của mỗi đường
=>O là trung điểm chung của AM và DE
ADME là hình chữ nhật
=>AM=DE
mà \(OA=OM=\frac{AM}{2};OD=OE=\frac{DE}{2}\)
nên \(OA=OM=OD=OE=\frac{AM}{2}=\frac{DE}{2}\)
ΔMHA vuông tại H
mà HO là đường trung tuyến
nên \(HO=\frac{MA}{2}\)
mà MA=DE
nên \(HO=\frac{DE}{2}\)
Xét ΔHDE có
HO là đường trung tuyến
\(HO=\frac{DE}{2}\)
Do đó: ΔHDE vuông tại H
=>\(HD^2+HE^2=ED^2\)
=>\(HD^2+HE^2=AM^2=\left(\frac12BC\right)^2=\frac14BC^2\)
=>\(BC^2=4\cdot HD^2+4\cdot HE^2\)
1,Cho tam giác ABC vuông tại A có đường cao AH, trung tuyến AM. Qua H kẻ đường thẳng // AB cắt AC tại D, kẻ đường thẳng // AC vắt AB tại E . Chứng minh:
a, AH=DE
b,BAM vuông góc với DE
c, tam giác ABC cần thêm điều kiện gì để AEHD là hình vuông
a Cho AB=6,AC=8. Tính SAEMD
2,Cho ABCD là hcn có O là giao điểm của 2 đường chéo.Trên OB lấy I.Gọi E là điểm đối xứng với A qua I.
a,C/M OIEC là hình thang
b, Gọi K là trung điểm của CE.C/M IK=OC
c, Đường thẳng IK cắt BC tại F và cắt DC tại H,C/M tam giác KHC cân
d, Tứ giác ABCD cần thêm điều kiện gì để OIKC là hcn
3, Cho tam giác ABC có góc A=90độ, AB<AC,trung tuyến AM.Vẽ tia Mx//AB cắt AC tại H.Trên tia Mx lấy điểm K sao cho MK=AB
a,C/M BM=AK
b,C/M M,K đx với nhau qua AC
c, Từ C vẽ đường thẳng vuông góc với AC cắt AM tại Q.C/M ACQB là hcn
Cho tam giác ABC vuông tại A. M là trung điểm của các cạnh Bc. Kẻ MD vuông góc vs AB, ME vuông góc vs AC.
a. CM tứ giác ADME là hcn
b. CM DECB là hình thang
c. Tam giác ABC cân có thêm điều kiện gì để DECB là hình thang cân
d. Cho AB= 6, AC= 8. Tím AM? Tính diện tích ABC và diện tích hcn ABCD
Cho đoạn AB cố định, điểm M di động trên đoạn AB. Kẻ tia Mx vuông góc với AB. Trên tia Mx, lấy 2 điểm C và D sao cho MC = MA, MD = MB. Gọi E, F lần lượt là trung điểm của AC và BD. Tìm vị trí của M sao cho diện tích tam giác MEF lớn nhất.
Cho tam giác ABCD vuông tại A và M là trung điểm của BC. Từ M kẻ MD vuông góc với AB (D thuộc AB) và ME vuông góc với AC (E thuộc AC). Chứng minh:
A) ADME là hình chữ nhật.
B) Gọi P là điểm đối xứng của D qua M. CM: DEPQ là hình thoi
a) Xét tứ giác ADME có:
. \(\widehat{BAC}\) = 900 ( \(\Delta\) ABC vuông tại A )
. \(\widehat{ADM}\) =900 ( \(MD\perp AB\) )
. \(\widehat{AEM}\) =900 ( \(ME\perp AC\) )
Vậy: ADME là hcn ( tứ giác có 3 góc vuông)
" đề bài câu b sai nha bạn" ^.^