giải pt hóa hc sau tìm x,y,a,b
27x+56y=19.3
3a+2b=0.4
1.5(x-a)+(y-a)=0.45
Giải bài này giúp mình với
Tìm x,y biết
27x + 56y = 27
x + y = 0,3
Bấm máy tính ???
\(x=-\dfrac{51}{145}\)
\(y=\dfrac{189}{290}\)
=>27x+56y=27 và 27x+27y=8,1
=>29y=18,9 và x+y=3/10
=>y=189/290 và x=-51/145
Tìm tích x*y, biết rằng x, y thỏa mãn các đẳng thức sau (a, b là hằng số): (2a^3-2b^3)x-3b=3a với a khác b và (6a+6b)y=(a-b)^2 với a khác -b.
Cho hệ pt \(\left\{{}\begin{matrix}x-2y=5\\mx-y=4\end{matrix}\right.\)
a, giải hệ pt với m = 2
b, Tìm m đề hệ pt có nghiệm duy nhất ( x, y ) trong đó x, y trái dấu
c, Tìm m đề hệ pt có nghiệm duy nhất ( x, y ) thỏa mãn x = / y /
b, \(\left\{{}\begin{matrix}x-2y=5\\mx-y=4\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=5+2y\\m\left(5+2y\right)-y=4\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=5+2y\\5m+2my-y=4\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=5+2y\\2my-y=4-5m\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=5+2y\\y\left(2m-1\right)=4-5m\end{matrix}\right.\)
Hpt trên có nghiệm duy nhất \(\Leftrightarrow\) 2m - 1 \(\ne\) 0 \(\Leftrightarrow\) m \(\ne\) \(\dfrac{1}{2}\)
Khi đó ta có hpt:
\(\left\{{}\begin{matrix}x=5+2y\\y=\dfrac{4-5m}{2m-1}\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=5+2.\dfrac{4-5m}{2m-1}\\y=\dfrac{4-5m}{2m-1}\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=\dfrac{3}{2m-1}\\y=\dfrac{4-5m}{2m-1}\end{matrix}\right.\)
Vậy với m \(\ne\) \(\dfrac{1}{2}\) thì hpt trên có nghiệm duy nhất \(\left\{{}\begin{matrix}x=\dfrac{3}{2m-1}\\y=\dfrac{4-5m}{2m-1}\end{matrix}\right.\)
Vì x, y trái dấu nên ta xét 2 trường hợp
Th1: x > 0; y < 0
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}\dfrac{3}{2m-1}>0\\\dfrac{4-5m}{2m-1}< 0\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}2m-1>0\\4-5m< 0\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}m>\dfrac{1}{2}\\m>\dfrac{4}{5}\end{matrix}\right.\)
\(\Leftrightarrow\) m > \(\dfrac{4}{5}\) (Thỏa mãn)
Th2: x < 0; y > 0
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}\dfrac{3}{2m-1}< 0\\\dfrac{4-5m}{2m-1}>0\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}2m-1< 0\\4-5m< 0\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}m< \dfrac{1}{2}\\m>\dfrac{4}{5}\end{matrix}\right.\)
\(\Leftrightarrow\) \(\dfrac{4}{5}< m< \dfrac{1}{2}\) (Vô lý)
Vậy m > \(\dfrac{4}{5}\) thì hpt có nghiệm duy nhất và thỏa mãn x, y trái dấu
c, Từ b ta có:
Với x \(\ne\) \(\dfrac{1}{2}\) hpt có nghiệm duy nhất \(\left\{{}\begin{matrix}x=\dfrac{3}{2m-1}\\y=\dfrac{4-5m}{2m-1}\end{matrix}\right.\)
Vì x = |y| \(\Leftrightarrow\) \(\dfrac{3}{2m-1}=\left|\dfrac{4-5m}{2m-1}\right|\)
Xét các trường hợp:
Th1: \(\dfrac{3}{2m-1}=\dfrac{4-5m}{2m-1}\)
\(\Leftrightarrow\) 3 = 4 - 5m (Vì m \(\ne\) \(\dfrac{1}{2}\))
\(\Leftrightarrow\) 5m = 1
\(\Leftrightarrow\) m = \(\dfrac{1}{5}\) (TM)
Th2: \(\dfrac{3}{2m-1}=\dfrac{5m-4}{2m-1}\)
\(\Leftrightarrow\) 3 = 5m - 4 (Vì m \(\ne\) \(\dfrac{1}{2}\))
\(\Leftrightarrow\) 5m = 7
\(\Leftrightarrow\) m = \(\dfrac{7}{5}\) (TM)
Vậy với m = \(\dfrac{1}{5}\); m = \(\dfrac{7}{5}\) thì hpt có nghiệm duy nhất và thỏa mãn x = |y|
Chúc bn học tốt!
Nguyễn Lê Phước Thịnh , Hồng Phúc , Nguyễn Thị Thuỳ Linh , Tan Thuy Hoang , Nguyễn Duy Khang , Nguyễn Trần Thành Đạt
a) Tìm hai số x; y biết x; y tỉ lệ thuận với 3; 4 và x + y = 14. b) Tìm hai số a; b biết a; b tỉ lệ thuận với 7; 9 và 3a – 2b = 30. c) Chia số 99 thành ba phần tỉ lệ thuận với 2; 3; 4. Giải rõ giúp mik cần gấp
a, Áp dụng tc dtsbn:
\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{x+y}{3+4}=\dfrac{14}{7}=2\\ \Rightarrow\left\{{}\begin{matrix}x=6\\y=8\end{matrix}\right.\)
b, Áp dụng tc dstbn:
\(\dfrac{a}{7}=\dfrac{b}{9}=\dfrac{3a-2b}{7\cdot3-2\cdot9}=\dfrac{30}{3}=10\\ \Rightarrow\left\{{}\begin{matrix}a=70\\b=90\end{matrix}\right.\)
c, Gọi 3 phần cần tìm là a,b,c
Áp dụng tc dstbn:
\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}=\dfrac{a+b+c}{2+3+4}=\dfrac{99}{9}=11\\ \Rightarrow\left\{{}\begin{matrix}a=22\\b=33\\c=44\end{matrix}\right.\)
Cho hệ phương trình\(\left\{{}\begin{matrix}ax-2y=a\\-2x+y=a+1\end{matrix}\right.\)
a. Giải hệ khi a=2
b. Tìm a để hệ pt có nghiệm duy nhất (x;y) sao cho x-y=1
a. Bạn tự giải.
b.
\(\left\{{}\begin{matrix}ax-2y=a\\-4x+2y=2a+2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}ax-2y=a\\\left(a-4\right)x=3a+2\end{matrix}\right.\)
Hệ có nghiệm duy nhất khi \(a-4\ne0\Leftrightarrow a\ne4\)
Khi đó: \(\left\{{}\begin{matrix}x=\dfrac{3a+2}{a-4}\\y=\dfrac{a^2+3a}{a-4}\end{matrix}\right.\)
\(x-y=1\Leftrightarrow\dfrac{3a+2}{a-4}-\dfrac{a^2+3a}{a-4}=1\)
\(\Leftrightarrow\dfrac{2-a^2}{a-4}=1\Leftrightarrow2-a^2=a-4\)
\(\Leftrightarrow a^2+a-6=0\Rightarrow\left[{}\begin{matrix}a=2\\a=-3\end{matrix}\right.\)
tìm a và b để phương trình sau có nghiệm
\(\hept{\begin{cases}2ax+3by=4a+9b\\2b^2\left(x-1\right)+3a^2\left(y-2\right)=3a^2+2b^2\end{cases}}\)
A) Tìm a,b,c biết: 3a=2b;4b=5c và -a-b+c=-52
B) tìm x,y,z biết !X-1/2!+!Y+2/3!+!X^2+XZ!=0
Ai nhanh mk tich mình cần gấp thanks
a) \(3a=2b\)\(\Rightarrow\)\(\frac{a}{2}=\frac{b}{3}\) hay \(\frac{a}{10}=\frac{b}{15}\)
\(4b=5c\)\(\Rightarrow\)\(\frac{b}{5}=\frac{c}{4}\) hay \(\frac{b}{15}=\frac{c}{12}\)
suy ra: \(\frac{a}{10}=\frac{b}{15}=\frac{c}{12}\)
đến đây bạn áp dụng tính chất dãy tỉ số bằng nhau nha
b) \(\left|x-1\right|+\left|y+\frac{2}{3}\right|+\left|x^2+xz\right|=0\)
Nhận thấy: \(\left|x-1\right|\ge0\) \(\left|y+\frac{2}{3}\right|\ge0;\) \(\left|x^2+xz\right|\ge0\)
suy ra: \(\left|x-1\right|+\left|y+\frac{2}{3}\right|+\left|x^2+xz\right|\ge0\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}x-1=0\\y+\frac{2}{3}=0\\x^2+xz=0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x=1\\y=-\frac{2}{3}\\z=-1\end{cases}}\)
Vậy....
Bài 1:
a)Tìm hai số x; y biết x; y tỉ lệ thuận với 3; 4 và x + y = 14.
b)Tìm hai số a; b biết a; b tỉ lệ thuận với 7; 9 và 3a – 2b = 30.
c)Tìm ba số x; y; z biết x; y; z tỉ lệ thuận với 3; 4; 5 và x – y + z = 20.
d)Tìm ba số a; b; c biết a; b; c tỉ lệ thuận với 4; 7; 10 và 2a + 3b + 4c = 69.
Giúp mik với !
Theo mình là:
a/ Theo đề ta có:
x/3=y/4 và x+y=14
Áp dụng tính chất của dãy tỉ số bằng nhau,ta có:
x/3=y/4=x+y=3+4=14/7=2
Từ x/3=2=>x=2.3=6
Từ y/4=2>y=2.4=8
Vậy x=6 và y=8.
b/
Theo đề ta có:
a/7=b/9 và 3a-2b=30
Áp dụng tính chất của dãy tỉ số bằng nhau,ta có:
a/7=b/9=3a/21=2b/18=3a-2b/21=18=30/3=10
Từ a/7=10=>a=10.7=70
Từ b/9=10=>b/10.9=90
Vậy a=70 và b=90.
c/
Theo đề ta có:
x/3=y/4=z/5 và x-y+z=20
Áp dụng tính chất của dãy tỉ số bằng nhau,ta có:
x/3=y/4=z/5=x-y+z/3-4=5=20/4=5
Từ x/3=5=>x=5.3=15
Từ y/4=5=>y=5.4=20
Từ z/5=5=>z=5.5=25
Vậy x=15,y=20 và z=25
d/
Theo đề ta có:
a/4=b/7=c/10 và 2a+3b+4c=69
Áp dụng tính chất của dãy tỉ số bằng nhau,ta có:
a/4=b/7=c/10=2a/8=3b/21=4c/40=2a+3b+4c/8+21+40=69/69=1
Từ a/4=1=>a=1.4=4
Từ b/7=1=>b=1.7=7
Từ c/10=1=>c=1.10=10
Vậy a=4,b=7 và c=10
a) x=6 y=8
b) a=70 b=90
c) x=15 y=20 z=25
d) a=4 b=7 c=10
bạn kiểm tra lại giúp mk xem câu nào sai chứ mk ko chắc đúng 100% đâu. (hơi mất tự tin sau khi nhìn điểm số ý mà)
_HT_
1) Cho các số thực \(a,b,c\) thỏa mãn \(a^3+b^3+c^3=3abc\) và \(a+b+c\ne0\)
Tính giá trị: \(P=\dfrac{a^2+2b^2+3c^2}{3a^2+2b^2+c^2}\)
2) Tìm các số dương \(x,y\) thỏa mãn: \(3^x=y^2+2y\)
1) \(\left\{{}\begin{matrix}a^3+b^3+c^3=3abc\\a+b+c\ne0\end{matrix}\right.\) \(\left(a;b;c\in R\right)\)
Ta có :
\(a^3+b^3+c^3\ge3abc\) (Bất đẳng thức Cauchy)
Dấu "=" xảy ra khi và chỉ khi \(a=b=c=1\left(a^3+b^3+c^3=3abc\right)\)
Thay \(a=b=c\) vào \(P=\dfrac{a^2+2b^2+3c^2}{3a^2+2b^2+c^2}\) ta được
\(\Leftrightarrow P=\dfrac{6a^2}{6a^2}=1\)
\(3^x=y^2+2y\left(x;y>0\right)\)
\(\Leftrightarrow3^x+1=y^2+2y+1\)
\(\Leftrightarrow3^x+1=\left(y+1\right)^2\left(1\right)\)
- Với \(\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)
\(pt\left(1\right)\Leftrightarrow3^0+1=\left(0+1\right)^2\Leftrightarrow2=1\left(vô.lý\right)\)
- Với \(\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)
\(pt\left(1\right)\Leftrightarrow3^1+1=\left(1+1\right)^2=4\left(luôn.luôn.đúng\right)\)
- Với \(x>1;y>1\)
\(\left(y+1\right)^2\) là 1 số chính phương
\(3^x+1=\overline{.....1}+1=\overline{.....2}\) không phải là số chính phương
\(\Rightarrow\left(1\right)\) không thỏa với \(x>1;y>1\)
Vậy với \(\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\) thỏa mãn đề bài