Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Công Lực
Xem chi tiết
Trương Anh
16 tháng 12 2018 lúc 11:28

Bấm máy tính ???

\(x=-\dfrac{51}{145}\)

\(y=\dfrac{189}{290}\)

Nguyễn Lê Phước Thịnh
7 tháng 12 2022 lúc 14:17

=>27x+56y=27 và 27x+27y=8,1

=>29y=18,9 và x+y=3/10

=>y=189/290 và x=-51/145

Nguyễn Tấn Khoa
Xem chi tiết
Aurora
Xem chi tiết
Trương Huy Hoàng
21 tháng 1 2021 lúc 21:54

 

b, \(\left\{{}\begin{matrix}x-2y=5\\mx-y=4\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=5+2y\\m\left(5+2y\right)-y=4\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=5+2y\\5m+2my-y=4\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=5+2y\\2my-y=4-5m\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=5+2y\\y\left(2m-1\right)=4-5m\end{matrix}\right.\)

Hpt trên có nghiệm duy nhất \(\Leftrightarrow\) 2m - 1 \(\ne\) 0 \(\Leftrightarrow\) m \(\ne\) \(\dfrac{1}{2}\)

Khi đó ta có hpt:

\(\left\{{}\begin{matrix}x=5+2y\\y=\dfrac{4-5m}{2m-1}\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=5+2.\dfrac{4-5m}{2m-1}\\y=\dfrac{4-5m}{2m-1}\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=\dfrac{3}{2m-1}\\y=\dfrac{4-5m}{2m-1}\end{matrix}\right.\)

Vậy với m \(\ne\) \(\dfrac{1}{2}\) thì hpt trên có nghiệm duy nhất \(\left\{{}\begin{matrix}x=\dfrac{3}{2m-1}\\y=\dfrac{4-5m}{2m-1}\end{matrix}\right.\)

Vì x, y trái dấu nên ta xét 2 trường hợp

Th1: x > 0; y < 0

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}\dfrac{3}{2m-1}>0\\\dfrac{4-5m}{2m-1}< 0\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}2m-1>0\\4-5m< 0\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}m>\dfrac{1}{2}\\m>\dfrac{4}{5}\end{matrix}\right.\)

\(\Leftrightarrow\) m > \(\dfrac{4}{5}\) (Thỏa mãn)

Th2: x < 0; y > 0

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}\dfrac{3}{2m-1}< 0\\\dfrac{4-5m}{2m-1}>0\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}2m-1< 0\\4-5m< 0\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}m< \dfrac{1}{2}\\m>\dfrac{4}{5}\end{matrix}\right.\)

\(\Leftrightarrow\) \(\dfrac{4}{5}< m< \dfrac{1}{2}\) (Vô lý)

Vậy m > \(\dfrac{4}{5}\) thì hpt có nghiệm duy nhất và thỏa mãn x, y trái dấu

c, Từ b ta có:

 Với x \(\ne\) \(\dfrac{1}{2}\) hpt có nghiệm duy nhất \(\left\{{}\begin{matrix}x=\dfrac{3}{2m-1}\\y=\dfrac{4-5m}{2m-1}\end{matrix}\right.\)

Vì x = |y| \(\Leftrightarrow\) \(\dfrac{3}{2m-1}=\left|\dfrac{4-5m}{2m-1}\right|\)

Xét các trường hợp:

Th1: \(\dfrac{3}{2m-1}=\dfrac{4-5m}{2m-1}\) 

\(\Leftrightarrow\) 3 = 4 - 5m (Vì m \(\ne\) \(\dfrac{1}{2}\))

\(\Leftrightarrow\) 5m = 1

\(\Leftrightarrow\) m = \(\dfrac{1}{5}\) (TM)

Th2: \(\dfrac{3}{2m-1}=\dfrac{5m-4}{2m-1}\)

\(\Leftrightarrow\) 3 = 5m - 4 (Vì m \(\ne\) \(\dfrac{1}{2}\))

\(\Leftrightarrow\) 5m = 7

\(\Leftrightarrow\) m = \(\dfrac{7}{5}\) (TM)

Vậy với m = \(\dfrac{1}{5}\); m = \(\dfrac{7}{5}\) thì hpt có nghiệm duy nhất và thỏa mãn x = |y|

Chúc bn học tốt!

Aurora
21 tháng 1 2021 lúc 21:41
Dương Hoàng
Xem chi tiết
Nguyễn Hoàng Minh
8 tháng 11 2021 lúc 17:25

a, Áp dụng tc dtsbn:

\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{x+y}{3+4}=\dfrac{14}{7}=2\\ \Rightarrow\left\{{}\begin{matrix}x=6\\y=8\end{matrix}\right.\)

b, Áp dụng tc dstbn:

\(\dfrac{a}{7}=\dfrac{b}{9}=\dfrac{3a-2b}{7\cdot3-2\cdot9}=\dfrac{30}{3}=10\\ \Rightarrow\left\{{}\begin{matrix}a=70\\b=90\end{matrix}\right.\)

c, Gọi 3 phần cần tìm là a,b,c

Áp dụng tc dstbn:

\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}=\dfrac{a+b+c}{2+3+4}=\dfrac{99}{9}=11\\ \Rightarrow\left\{{}\begin{matrix}a=22\\b=33\\c=44\end{matrix}\right.\)

halo
Xem chi tiết
Nguyễn Việt Lâm
29 tháng 1 2021 lúc 14:38

a. Bạn tự giải.

b.

\(\left\{{}\begin{matrix}ax-2y=a\\-4x+2y=2a+2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}ax-2y=a\\\left(a-4\right)x=3a+2\end{matrix}\right.\)

Hệ có nghiệm duy nhất khi \(a-4\ne0\Leftrightarrow a\ne4\)

Khi đó: \(\left\{{}\begin{matrix}x=\dfrac{3a+2}{a-4}\\y=\dfrac{a^2+3a}{a-4}\end{matrix}\right.\)

\(x-y=1\Leftrightarrow\dfrac{3a+2}{a-4}-\dfrac{a^2+3a}{a-4}=1\)

\(\Leftrightarrow\dfrac{2-a^2}{a-4}=1\Leftrightarrow2-a^2=a-4\)

\(\Leftrightarrow a^2+a-6=0\Rightarrow\left[{}\begin{matrix}a=2\\a=-3\end{matrix}\right.\)

forever young
Xem chi tiết
Vũ Đức Hưng
Xem chi tiết
Không Tên
22 tháng 7 2018 lúc 21:03

a)  \(3a=2b\)\(\Rightarrow\)\(\frac{a}{2}=\frac{b}{3}\) hay  \(\frac{a}{10}=\frac{b}{15}\)

\(4b=5c\)\(\Rightarrow\)\(\frac{b}{5}=\frac{c}{4}\)  hay  \(\frac{b}{15}=\frac{c}{12}\)

suy ra:   \(\frac{a}{10}=\frac{b}{15}=\frac{c}{12}\)

đến đây bạn áp dụng tính chất dãy tỉ số bằng nhau nha

b)  \(\left|x-1\right|+\left|y+\frac{2}{3}\right|+\left|x^2+xz\right|=0\)

Nhận thấy:   \(\left|x-1\right|\ge0\)    \(\left|y+\frac{2}{3}\right|\ge0;\) \(\left|x^2+xz\right|\ge0\)

suy ra:   \(\left|x-1\right|+\left|y+\frac{2}{3}\right|+\left|x^2+xz\right|\ge0\)

Dấu "=" xảy ra  \(\Leftrightarrow\)\(\hept{\begin{cases}x-1=0\\y+\frac{2}{3}=0\\x^2+xz=0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x=1\\y=-\frac{2}{3}\\z=-1\end{cases}}\)

Vậy....

Chi Phạm
Xem chi tiết
Nguyễn Khánh Đan
28 tháng 11 2021 lúc 20:59

Theo mình là:

a/ Theo đề ta có:

x/3=y/4 và x+y=14

Áp dụng tính chất của dãy tỉ số bằng nhau,ta có:

x/3=y/4=x+y=3+4=14/7=2

Từ x/3=2=>x=2.3=6

Từ y/4=2>y=2.4=8

Vậy x=6 và y=8.

b/

Theo đề ta có:

a/7=b/9 và 3a-2b=30

Áp dụng tính chất của dãy tỉ số bằng nhau,ta có:

a/7=b/9=3a/21=2b/18=3a-2b/21=18=30/3=10

Từ a/7=10=>a=10.7=70

Từ b/9=10=>b/10.9=90

Vậy a=70 và b=90.

c/

Theo đề ta có:

x/3=y/4=z/5 và x-y+z=20

Áp dụng tính chất của dãy tỉ số bằng nhau,ta có:

x/3=y/4=z/5=x-y+z/3-4=5=20/4=5

Từ x/3=5=>x=5.3=15

Từ y/4=5=>y=5.4=20

Từ z/5=5=>z=5.5=25

Vậy x=15,y=20 và z=25

d/

Theo đề ta có:

a/4=b/7=c/10 và 2a+3b+4c=69

Áp dụng tính chất của dãy tỉ số bằng nhau,ta có:

a/4=b/7=c/10=2a/8=3b/21=4c/40=2a+3b+4c/8+21+40=69/69=1

Từ a/4=1=>a=1.4=4

Từ b/7=1=>b=1.7=7

Từ c/10=1=>c=1.10=10

Vậy a=4,b=7 và c=10

Tuệ Minh Nguyễn Hồng
28 tháng 11 2021 lúc 21:09

a) x=6    y=8
b) a=70   b=90
c) x=15   y=20   z=25

d) a=4  b=7  c=10 

bạn kiểm tra lại giúp mk xem câu nào sai chứ mk ko chắc đúng 100% đâu. (hơi mất tự tin sau khi nhìn điểm số ý mà)

_HT_

HT.Phong (9A5)
Xem chi tiết
Nguyễn Đức Trí
15 tháng 9 2023 lúc 12:04

1) \(\left\{{}\begin{matrix}a^3+b^3+c^3=3abc\\a+b+c\ne0\end{matrix}\right.\)  \(\left(a;b;c\in R\right)\)

Ta có :

\(a^3+b^3+c^3\ge3abc\) (Bất đẳng thức Cauchy)

Dấu "=" xảy ra khi và chỉ khi \(a=b=c=1\left(a^3+b^3+c^3=3abc\right)\)

Thay \(a=b=c\) vào \(P=\dfrac{a^2+2b^2+3c^2}{3a^2+2b^2+c^2}\) ta được

\(\Leftrightarrow P=\dfrac{6a^2}{6a^2}=1\)

Nguyễn Đức Trí
15 tháng 9 2023 lúc 12:20

\(3^x=y^2+2y\left(x;y>0\right)\)

\(\Leftrightarrow3^x+1=y^2+2y+1\)

\(\Leftrightarrow3^x+1=\left(y+1\right)^2\left(1\right)\)

- Với \(\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)

\(pt\left(1\right)\Leftrightarrow3^0+1=\left(0+1\right)^2\Leftrightarrow2=1\left(vô.lý\right)\)

- Với \(\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)  

\(pt\left(1\right)\Leftrightarrow3^1+1=\left(1+1\right)^2=4\left(luôn.luôn.đúng\right)\)

- Với \(x>1;y>1\)

\(\left(y+1\right)^2\) là 1 số chính phương

\(3^x+1=\overline{.....1}+1=\overline{.....2}\) không phải là số chính phương

\(\Rightarrow\left(1\right)\) không thỏa với \(x>1;y>1\)

Vậy với \(\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\) thỏa mãn đề bài