cho mình hỏi tìm giá trị nhỏ nhất của p=((2b)a/(2a-ba)2)+(2a+2ba)/2ba)
.
Cho ƯCLN (a,b)=1(a,b)=1 . Hãy tìm ước chung lớn nhất của a+2ba+2b và 2a+3b2a+3b .
( a + 2b; 2a + 3b ) = ( a + 2b ; a + b ) = ( b ; a + b ) = ( b; a ) = 1
=> Ước chung lớn nhất cần tìm là 1.
Tìm X biết X x 2 + X x 3 + X x 4 + X = 2130. Vậy X=
Cho ba số dương a,b,c thỏa mãn \(\sqrt{a}+\sqrt{b}+\sqrt{c}=\sqrt{3}\). Tìm giá trị nhỏ nhất của biểu thức P= \(\sqrt{2a^2+ab+2b^2}+\sqrt{2b^2+bc+2c^2}+\sqrt{2c^2+ca+2a^2}\)
Cho các số thực không âm a,b. Tìm giá trị nhỏ nhất của biểu thức: \(P=\dfrac{\left(a^2+2b+3\right).\left(b^2+2a+3\right)}{\left(2a+1\right).\left(2b+1\right)}\)
\(P\ge\dfrac{\left(2a+1+2b+1\right)\left(2a+1+2b+1\right)}{\left(2a+1\right)\left(2b+1\right)}\ge\dfrac{4\left(2a+1\right)\left(2b+1\right)}{\left(2a+1\right)\left(2b+1\right)}=4\)
Vậy \(P_{max}=4\), với a=b=1
a-b=1. tìm giá trị nhỏ nhất của A = 2a^2 + 2b^2
\(A=2\left(a^2+b^2\right)=2\left[\left(b+1\right)^2+b^2\right]=2\left(2b^2+2b+1\right)=4\left[b^2+b+\dfrac{1}{4}\right]+1=4\left(b+\dfrac{1}{2}\right)^2+1\ge1\)
" = " \(\Leftrightarrow b=-\dfrac{1}{2};a=\dfrac{1}{2}\)
Cho ba số dương a,b,c thỏa mãn điều kiện abc=1
Tìm giá trị nhỏ nhất của biểu thức :Q=\(\frac{bc}{a^2b+a^2c}+\frac{ca}{b^2c+b^2a}+\frac{ab}{c^2a+c^2b}\)
Cho các số thực dương a,b,c thỏa mãn \(\sqrt{a}+\sqrt{b}+\sqrt{c}=1\) tìm giá trị nhỏ nhất của biểu thức \(P=\sqrt{2a^2+ab+2b^2}+\sqrt{2b^2+bc+2c^2}+\sqrt{2c^2+ca+2a^2}\)
\(\sqrt{2a^2+ab+2b^2}=\sqrt{\dfrac{3}{2}\left(a^2+b^2\right)+\dfrac{1}{2}\left(a+b\right)^2}\ge\sqrt{\dfrac{3}{4}\left(a+b\right)^2+\dfrac{1}{2}\left(a+b\right)^2}=\dfrac{\sqrt{5}}{2}\left(a+b\right)\)
Tương tự:
\(\sqrt{2b^2+bc+2c^2}\ge\dfrac{\sqrt{5}}{2}\left(b+c\right)\) ; \(\sqrt{2c^2+ca+2a^2}\ge\dfrac{\sqrt{5}}{2}\left(c+a\right)\)
Cộng vế với vế:
\(P\ge\sqrt{5}\left(a+b+c\right)\ge\dfrac{\sqrt{5}}{3}\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^3=\dfrac{\sqrt{5}}{3}\)
Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{9}\)
cho ba số thực dương a,b,c thỏa mãn \(a^2+b^2+c^2=1\). Tìm giá trị nhỏ nhất của biểu thức \(P=\dfrac{a^3}{2b+3c}+\dfrac{b^3}{2c+3a}+\dfrac{c^3}{2a+3b}\)
Áp dụng bđt Schwarz ta có:
\(P=\dfrac{a^4}{2ab+3ac}+\dfrac{b^4}{2cb+3ab}+\dfrac{c^4}{2ac+3bc}\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{5\left(ab+bc+ca\right)}\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{5\left(a^2+b^2+c^2\right)}=\dfrac{1}{5}\).
Đẳng thức xảy ra khi và chỉ khi \(a=b=c=\dfrac{\sqrt{3}}{3}\).
Cho a, b,c là độ dài 3 cạnh của một tam giác. Tìm giá trị nhỏ nhất của biểu thức \(P=\dfrac{a}{\sqrt{2b^2+2c^2-a^2}}+\dfrac{b}{\sqrt{2a^2+2c^2-b^2}}+\dfrac{c}{\sqrt{2b^2+2a^2-c^2}}\).
Ta có:
\(\left(2a^2-b^2-c^2\right)^2\ge0\)
\(\Leftrightarrow4a^4+b^4+c^4-4a^2b^2-4a^2c^2+2b^2c^2\ge0\)
\(\Leftrightarrow a^4+b^4+c^4+2a^2b^2+2b^2c^2+2c^2a^2\ge6a^2b^2+6a^2c^2-3a^4\)
\(\Leftrightarrow\left(a^2+b^2+c^2\right)^2\ge3a^2\left(2b^2+2c^2-a^2\right)\)
\(\Leftrightarrow\dfrac{1}{\sqrt{2b^2+2c^2-a^2}}\ge\dfrac{\sqrt{3}a}{a^2+b^2+c^2}\)
\(\Leftrightarrow\dfrac{a}{\sqrt{2b^2+2c^2-a^2}}\ge\sqrt{3}\dfrac{a^2}{a^2+b^2+c^2}\)
Tương tự: \(\dfrac{b}{\sqrt{2a^2+2c^2-b^2}}\ge\sqrt{3}.\dfrac{b^2}{a^2+b^2+c^2}\) ; \(\dfrac{c}{\sqrt{2a^2+2b^2-c^2}}\ge\sqrt{3}.\dfrac{c^2}{a^2+b^2+c^2}\)
Cộng vế: \(P\ge\dfrac{\sqrt{3}\left(a^2+b^2+c^2\right)}{a^2+b^2+c^2}=\sqrt{3}\)
\(P_{min}=\sqrt{3}\) khi \(a=b=c\)
1.cho B= a^4+b^4+c^4 -2a^2.b^2-2a^2.c^2-2b^2.c^2 .CM : a,b,c là đọ dài ba cạnh của tam giác
2. tìm giá trị nhỏ nhất vcủa biểu thức
B= x^2+y^+2xy-2y+2020
Cho a,b là 2 số thực dương thoả mãn a+b=2. Tìm giá trị nhỏ nhất của biểu thức
\(P=\frac{2a^2+3b^2}{2a^3+3b^3}+\frac{2b^2+3a^2}{2b^3+3a^3}\)