CMR:
A(x)=\(x^2\)+4x+19 không có nghiệm B(x)=4\(x^2\)+12x+48 không có nghiệm
1/ CMR: Đa thức: x2-x+1 không có nghiệm.
2/ Tìm nghiệm của đa thức (ghi rõ lời giải):
a/ x2-5x+6
b/ x3+x2+x+1
c/ 6x2-11x+3
d/ 4x2-4x-3
e/ 2x2-3x-27
f/ x3+4x2-29x+24
g/ 3x2-8x+4
Ta có x2-x+1=(x2-2*1/2x+1/4)+3/4 =(x-1/2)2+3/4.
vì (x-1/2)2 >=0 với mọi x => (x-1/2)2+3/4 >=3/4 >0
vậy đa thức x2-x+1 vô nghiệm
câu 1,
trong sách nâng cao và phát triển toán 7 tập 2 trang 15 có bài tương tự đấy.
1/ CMR: Đa thức: x2-x+1 không có nghiệm.
2/ Tìm nghiệm của đa thức (ghi rõ lời giải):
a/ x2-5x+6
b/ x3+x2+x+1
c/ 6x2-11x+3
d/ 4x2-4x-3
e/ 2x2-3x-27
f/ x3+4x2-29x+24
g/ 3x2-8x+4
2/ a. Ta có : x2 - 5x + 6 = x2 - 3x - 2x + 6 = ( x2 - 3x ) + ( - 2x + 6 ) = x ( x - 3 ) - 2 ( x - 3 ) = ( x - 3 )( x - 2 ) = 0 => x - 3 = 0 hoặc x - 2 = 0 => x = 3 hoặc x = 2
c. Tá có : 6x^2 - 11x + 3 = 6x^2 - 9x - 2x + 3 = ( 6x^2 - 9x ) + ( - 2x + 3 ) = 3x ( 2x - 3 ) - ( 2x - 3 ) = ( 2x - 3 )( 3x - 1 ) = 0 => 2x-3 =0 hoặc 3x-1 =0 => x= 3/2 hoặc x =1/3
Mấy bài sau làm tương tự nha
Bài 1. Cho hai đa thức f(x)= 4x4-5x3+3x+2 và g(x)= -4x4+5x3+7. Trong các số -4; -3; 0 và 1, số nào là nghiệm của đa thức f(x) và g(x).
Bài 2. Cho hai đa thức f(x)=-x5+3x2+4x+8 và g(x)= -x5-3x2+4x+2. CMR đa thức f(x)-g(x) không có nghiệm
Bài 1
Gợi ý bạn làm : Bạn thay \(x=-4;x=-3;x=0;x=1\) vào \(f\left(x\right);g\left(x\right)\)
\(\Rightarrow\) Nếu kết quả ra giống nhau thì là nghiệm , ra khác nhau thì không là nghiệm
VD : Thay \(x=-4\) vào \(f\left(x\right)\) và \(g\left(x\right)\)
\(f\left(-4\right)=4.\left(-4\right)^4-5\left(-4\right)^3+3.\left(-4\right)+2=1334\)
\(g\left(x\right)=-4.\left(-4\right)^4+5\left(-4\right)^3+7=-1337\)
Ra hai kết quả khác nhau
\(\Rightarrow x=-4\) không là nghiệm
Bài 2
\(f\left(x\right)-g\left(x\right)=\left(-x^5+3x^2+4x+8\right)-\left(-x^5-3x^2+4x+2\right)\\ =-x^5+3x^2+4x+8+x^5+3x^2-4x-2\\ =\left(-x^5+x^5\right)+\left(3x^2+3x^2\right)+\left(4x-4x\right)+\left(8-2\right)\\ =6x^2+6\\ =x^2+1\\ =x^2+2.\dfrac{1}{2}x+\dfrac{1}{4}+\dfrac{3}{4}\\ =\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\)
\(\Rightarrow\) phương trình vô nghiệm
Cho 2 đa thức A(x)=x^3-3.x^2+5x+3 B(x)=-x^3+4x^2+x^4-5x+3 a/ tính M(x)=A(x)+B(x) và N(x)-B(x) b/ tính M(1). Giá trị x=1 có là nghiệm của M(x) không? Vì sao c/ tìm nghiệm của M(x)
CMR: các PT sau vô nghiệm
a) x^4 -2x^3 +4x^2 -3x +2 = 0
b) x^6 + x^5 + x^4 + x^3 +x^2 + x + 1=0
a) \(x^4-2x^3+4x^2-3x+2=0\)
\(\Leftrightarrow x^4-2x^3+x^2+3x^2-3x+2=0\)
\(\Leftrightarrow\left(x^4-2x^3+x^2\right)+3\left(x^2-x+\frac{1}{4}\right)+\frac{5}{4}=0\)
\(\Leftrightarrow\left(x^2-x\right)^2=3\left(x-\frac{1}{2}\right)^2+\frac{5}{4}=0\)
Vì (x2 -x )2 \(\ge0\)với mọi x
\(\Rightarrow\left(x^2-x\right)^2+3\left(x-\frac{1}{2}\right)^2+\frac{5}{4}>0\)với mọi x
=> Phương trình trên vô nghiệm - đpcm
b) Ta có
x6+x5+x4+x3+x2+x+1=0
Nhận thấy x = 1 không là nghiệm của phương trình. Nhân cả hai vế của phương trình với x-1 được :
(x−1)(x6+x5+x4+x3+x2+x+1)=0
⇔x7−1=0
⇔x7=1
⇔x=1
(vô lí)
Điều vô lí chứng tỏ phương trình vô nghiệm.
1)cho f(x)=ax^3+bx^2+cx+d trong đó a,b,c,d thuộc Z và thỏa mãn b=3a+c.Chứng minh rằng f(1).f(-2) là bình phương của một số nguyên.
2)cho đa thức f(x)=ax^2+bx+c với a,b,c là hằng số.Hãy xác định a,b,c biết f(1)=4,f(-1)=8 và a-c=4
3)cho f(x)=ax^3+4x(x^2-1)+8;g(x)=x^3-4x(bx-1)+c-3.Xác định a,b,c để f(x)=g(x).
4)cho f(x)=cx^2+bx+a và g(x)=ax^2+bx+c.
cmr nếu Xo là nghiệm của f(x) thì 1/Xo là nghiệm của g(x)
5)cho đa thức f(x) thỏa mãn xf(x+2)=(x^2-9)f(x).cmr đa thức f(x) có ít nhất 3 nghiệm
6)tính f(2) biết f(x)+(x+1)f(-x)=x+2
Chứng tỏ các đa thức sau không có nghiệm:
a) x^2+6x+10
b) x^2+4x+7
c) x^4+2x^2+1
a,x2+6x+10
=x2+3x+3x+3.3+1
=x(3+x)+3(3+x)+1
=(3+x)(3+x)+1
=(3+x)2+1
Vì (3+x)2>hoặc=0
=>(3+x)2+1>1
Vậy đa thức trên ko có ngiệm
a) x2 + 6x + 10
= x2 + 3x + 3x + 9 + 1
= x ( x + 3 ) + 3 ( x + 3 ) + 1
= ( x + 3 ).( x + 3 ) + 1
= ( x + 3 )2 + 1 . Vì ( x + 3 ) > 0 hoặc = 0 với mọi x
Vậy đa thức trên vô nghiệm
b) x2 + 4x + 7
= x2 + 2x + 2x + 4 + 3
= x ( x + 2 ) + 2 ( x + 2 ) + 3
= ( x + 2 ).( x + 2 ) + 3
= ( x + 2 )2 + 3 . Vì ( x + 2 )2 > 0 hoặc = 0 với mọi x
Vậy đa thức trên vô nghiệm
a)x2+6x+10
=(x+3)2+1
Mà (x+3)2>=0 với mọi x thuộc R nên
(x+3)2+1>=1 Vậy ...
b)x2+4x+7
=(x+2)2+3
Mà (x+2)2>=0 với mọi x thuộc R nên
(x+2)2+3>=3 Vậy ...
c) Tương tự nha
Đúng cho mình :))
Cho 2 đa thức:
A(x) = \(x^5-3x^2-x^3-x^4-4x^3-1\frac{3}{4}\)
B(x) = \(-5x^3+2x^4-x^2+x^5\)
a) Sắp xếp đa thức theo luỹ thừa giảm dần
b) Tính C(x) = A(x) - B(x)
c) Chứng tỏ x=0 là nghiệm của B(x) nhưng không là nghiệm của A(x)
d) Chứng tỏ C(x) không có nghiệm
Bạn nào biết thì giúp mình nha, đang rất gấp!
Cảm ơn nhiều!
a,A(x)=x5-x4-5x3-3x2-7/4
B(x)=x5+2x4_5x3_x2
b,C(x)=-3x4-2x2-7/4
c,thay x=0 vào cả hai đa thức ta thấy A(0) khác 0 B(0)=0 suy ra đpcm
d,vì x4lớn hơn bằng 0
x2luôn lớn hơn bằng 0suy ra -3x4-2x2-7/4 luôn nhỏ hơn 0 suy ra đpcm
CMR với mọi giá trị của biến ta luôn có x^4+3x^2+3>0 (x^2+2x+3)(x^2+2x+4)+3>0 Tìm GTNN hay GTLN của các biểu thức sau A=x^2+8x ; B= -2x^2+8x-15 ; C=x^2-4x+7 ; D=(x^2-4x-5)(x^2-4x-19)+49 ; E=x^2-6x+y^2-2y+12
Bài 2:
a: \(A=x^2+8x\)
\(=x^2+8x+16-16\)
\(=\left(x+4\right)^2-16\ge-16\)
Dấu '=' xảy ra khi x=-4
b: \(B=-2x^2+8x-15\)
\(=-2\left(x^2-4x+\dfrac{15}{2}\right)\)
\(=-2\left(x^2-4x+4+\dfrac{7}{2}\right)\)
\(=-2\left(x-2\right)^2-7\le-7\)
Dấu '=' xảy ra khi x=2
c: \(C=x^2-4x+7\)
\(=x^2-4x+4+3\)
\(=\left(x-2\right)^2+3\ge3\)
Dấu '=' xảy ra khi x=2
e: \(E=x^2-6x+y^2-2y+12\)
\(=x^2-6x+9+y^2-2y+1+2\)
\(=\left(x-3\right)^2+\left(y-1\right)^2+2\ge2\)
Dấu '=' xảy ra khi x=3 và y=1