Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Gato Bánh
Xem chi tiết
Phan Thị Quỳnh Anh
Xem chi tiết
Vũ Nguyễn Hoài Nam
23 tháng 1 2016 lúc 21:20

6567 đồng

tick nha

nguyễn khánh huyền
Xem chi tiết
LIVERPOOL
6 tháng 7 2017 lúc 11:12

a=\(1-\frac{1}{2}+\frac{1}{3}-...-\frac{1}{100}=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)\(=\left(1+\frac{1}{2}+...+\frac{1}{100}\right)-\left(1+\frac{1}{2}+...+\frac{1}{50}\right)=\frac{1}{51}+...+\frac{1}{100}\)

=>b/a=2011

Thanh Tùng DZ
6 tháng 7 2017 lúc 11:10

hình như đề : CMR : \(\frac{b}{a}\)là 1 số nguyên

Ta có :

\(a=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{99.100}\)

\(a=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\)

\(a=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)

\(a=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{99}+\frac{1}{100}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)

\(a=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)\)

\(a=\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\)

\(b=\frac{2011}{51}+\frac{2011}{52}+\frac{2011}{53}+...+\frac{2011}{100}\)

\(b=2011.\left(\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}\right)\)

\(\Rightarrow\frac{b}{a}=\frac{2011.\left(\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}\right)}{\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}}=2011\)là 1 số nguyên ( đpcm )

tth_new
9 tháng 6 2018 lúc 8:17

Sửa đề: Chứng minh \(\frac{b}{a}\)là một số nguyên

Ta có: \(a=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{99.100}\)

\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

Áp dụng quy tắc dấu ngoặc vào tổng đại số trên , và theo quy luật của tổng đại số.ta có:

\(a=\left(1+\frac{1}{3}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)

Tiếp tục phân tích , ta được:

\(a=\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}\)

Ta có: \(\frac{b}{a}=\frac{\frac{2011}{51}+\frac{2011}{52}+\frac{2011}{53}+...+\frac{2011}{100}}{\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}}\)

\(=\frac{2011\left(\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}\right)}{\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}}=\frac{2011}{1}=2011\)là một số nguyên (đpcm)

Nguyễn Thị Bảo Trâm
Xem chi tiết
Bùi Thế Hào
23 tháng 3 2018 lúc 14:27

1/ (69.210+1210)+(219.273+15.49.94)  = 29.39.210+310.220+219.39+5.3.218.38 = 219.39+310.220+219.39+5.218.39

218.39(2+3.22+5)=19.218.39

Nguyễn Trọng Bằng
19 tháng 7 2018 lúc 21:43

sao bạn lại nhắn vớ va vớ vậy PHẠM ĐỨC PHÚC

IS
26 tháng 2 2020 lúc 20:01

1/ (69
.210+1210
)+(219
.273+15.49
.94
)  = 29
.39
.210+310
.220+219
.39+5.3.218
.38
 = 219
.39+310
.220+219
.39+5.218
.39
= 2
18
.39
(2+3.22+5)=19.218
.39

Khách vãng lai đã xóa
Bomin Lee
Xem chi tiết
Hakawa Genzo
14 tháng 12 2016 lúc 13:02

Ta có:

A=-2012/4025=>-2012/4025x2=-4024/4025

B=-1999/3997=>-1999/3997x2=-3998/3997

Ta có: 4024/4025<1<3998/3997

=>4024/4025<3998/3997

=>-4024/4025>-3998/3997

=>-2012/4025>-1999/3997

My Dream
5 tháng 1 2020 lúc 22:07

Có ai biết làm câu b) ko vậy, mình ko biết làm, giúp mình với!!

Khách vãng lai đã xóa
nguyễn minh chí
14 tháng 3 2020 lúc 22:33

tôi biết

Khách vãng lai đã xóa
Doraemon
Xem chi tiết
Nguyễn Văn A
24 tháng 3 2015 lúc 21:16

bài này lớp 6 mik làm rùi

Ta có:

\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(A=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)\) 

\(A=\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}\)

Ta có \(\frac{B}{A}=2011\)

Doraemon
25 tháng 3 2015 lúc 9:14

bạn ơi mình vẫn chưa hiểu lắm

nguyenxuantung
14 tháng 9 2016 lúc 16:35

a/b=2011

Nguyễn Ngọc Châu Anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 5 2022 lúc 21:05

\(\Leftrightarrow x\cdot\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{2011}-\dfrac{1}{2012}\right)=2011\)

\(\Leftrightarrow x\cdot\dfrac{2011}{2012}=2011\)

hay x=2012

Nguyễn Ngọc Huy Toàn
16 tháng 5 2022 lúc 21:06

\(\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2011.2012}\right)x=2011\)

\(\left(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2011}-\dfrac{1}{2012}\right)x=2011\)

\(\left(\dfrac{1}{1}-\dfrac{1}{2012}\right)x=2011\)

\(\dfrac{2011}{2012}x=2011\)
\(x=2012\)

2611
16 tháng 5 2022 lúc 21:06

`(1/[1.2]+1/[2.3]+1/[3.4]+....+1/[2011.2012])x=2011`

`(1-1/2+1/2-1/3+1/3-1/4+.....+1/2011-1/2012)x=2011`

`(1-1/2012)x=2011`

`2011/2012x=2011`

`x=2011:2011/2012`

`x=2012`

Nguyễn Phạm Quang Khải
Xem chi tiết
Gato Bánh
Xem chi tiết
Vương Tuấn Đạt
18 tháng 4 2017 lúc 19:00

Có: \(B=\dfrac{2011}{1.2}+\dfrac{2011}{2.3}+\dfrac{2011}{3.4}+...+\dfrac{2011}{1999.2000}\)

B= \(2011\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{1999.2000}\right)\)

B = \(2011\left(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{1999}-\dfrac{1}{2000}\right)\)

B= \(2011.\left(1-\dfrac{1}{2000}\right)\)

B = \(2011.\dfrac{1999}{2000}=\dfrac{4019989}{2000}\)