Cho (a+b)(b+c)(c+a)=1. Các số a, b, c > 0.
CM: \(ab+bc+ca\le\dfrac{3}{4}\)
Cho a, b, c>0 thỏa mãn: abc=1. CM: \(\dfrac{1}{\sqrt{ab+a+2}}+\dfrac{1}{\sqrt{bc+b+2}}+\dfrac{1}{\sqrt{ca+c+2}}\le\dfrac{3}{2}\)
Cho a+b+c=2 và ab+bc+ac=1. CM: \(0\le a,b,c\le\dfrac{4}{3}\)
Ta có \(a+b+c=2\Leftrightarrow b+c=2-a\).
Do đó \(1=ab+bc+ca=a\left(b+c\right)+bc=a\left(2-a\right)+bc\Leftrightarrow bc=a^2-2a+1\).
Áp dụng bất đẳng thức AM - GM ta có:
\(4bc\le\left(b+c\right)^2\Leftrightarrow4\left(a^2-2a+1\right)\le\left(2-a\right)^2\Leftrightarrow3a^2-4a\le0\Leftrightarrow a\left(3a-4\right)\le0\Leftrightarrow0\le a\le\dfrac{4}{3}\).
Tương tự với b, c. Ta có đpcm.
cho a,b,c>0 thỏa mãn a+b+c=1. CMR: \(P=\sqrt{\dfrac{ab}{c+ab}}+\sqrt{\dfrac{bc}{a+bc}}+\sqrt{\dfrac{ca}{b+ca}}\le\dfrac{3}{2}\)
Cho các số thực dương $a$, $b$, $c$ thỏa mãn $abc = 1$. Chứng minh rằng
$\dfrac{ab}{a^4+b^4+ab}+\dfrac{bc}{b^4+c^4+bc}+\dfrac{ca}{c^4+a^4+ca} \le 1$
Cho a,b,c >0 thỏa \(a^2+b^2+c^2=1.CMR:\)
\(P=\dfrac{bc}{a^2+1}+\dfrac{ca}{b^2+1}+\dfrac{ab}{c^2+1}\le\dfrac{3}{4}\)
Lời giải:Áp dụng BĐT AM-GM và BĐT Cauchy-Schwarz:
\(\frac{bc}{a^2+1}=\frac{bc}{(a^2+b^2)+(a^2+c^2)}\leq \frac{1}{4}.\frac{(b+c)^2}{(a^2+b^2)+(a^2+c^2)}\leq \frac{1}{4}\left(\frac{b^2}{a^2+b^2}+\frac{c^2}{a^2+c^2}\right)\)
Hoàn toàn tương tự với các phân thức còn lại, ta có:
\(P\leq \frac{1}{4}\left(\frac{b^2+a^2}{a^2+b^2}+\frac{c^2+a^2}{a^2+c^2}+\frac{b^2+c^2}{b^2+c^2}\right)=\frac{3}{4}\)
(đpcm)
Dấu "=" xảy ra khi $a=b=c=\sqrt{\frac{1}{3}}$
Cho a,b,c là các số thực dương bất kì, chứng minh rằng:
\(\dfrac{\sqrt{bc}}{a+3\sqrt{bc}}+\dfrac{\sqrt{ca}}{b+3\sqrt{ca}}+\dfrac{\sqrt{ab}}{c+3\sqrt{ab}}\le\dfrac{3}{4}\)
Bất đẳng thức cần chứng minh tương đương với:
\(\dfrac{a}{a+3\sqrt{bc}}+\dfrac{b}{b+3\sqrt{ca}}+\dfrac{c}{c+3\sqrt{ab}}\)
Ta áp dụng bất đẳng thức Cô si dạng \(2\sqrt{xy}\le x+y\) cho các căn thức ở mẫu, khi đó ta được:
\(\dfrac{a}{a+3\sqrt{bc}}+\dfrac{b}{b+3\sqrt{ca}}+\dfrac{c}{c+3\sqrt{ab}}\ge\) với biểu thức
\(\dfrac{2a}{2a+3b+3c}+\dfrac{2b}{3a+2b+3c}+\dfrac{2c}{3a+3b+2c}\)
Khi đó ta cần chứng minh:
\(\dfrac{2a}{2a+3b+3c}+\dfrac{2b}{3a+2b+3c}+\dfrac{2c}{3a+3b+2c}\ge\dfrac{3}{4}\)
Đặt: \(\left\{{}\begin{matrix}x=2a+3b+3c\\y=3a+2b+3c\\z=3a+3b+2c\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}2a=\dfrac{1}{4}\left(3y+3z-5x\right)\\2b=\dfrac{1}{4}\left(3z+3x-5y\right)\\2c=\dfrac{1}{4}\left(3x+3y-5z\right)\end{matrix}\right.\)
Khi đó đẳng thức trên được viết lại thành:
\(\dfrac{3y+3z-5x}{4x}+\dfrac{3z+3x-5y}{4y}+\dfrac{3x+3y-5z}{4z}\ge\dfrac{3}{4}\)
Hay: \(3\left(\dfrac{x}{y}+\dfrac{y}{x}+\dfrac{y}{z}+\dfrac{z}{y}+\dfrac{x}{z}+\dfrac{z}{x}\right)-15\ge3\)
Bất đẳng thức cuối cùng luôn đúng theo bất đẳng thức Cô si.
Vậy bất đẳng thức được chứng minh. Đẳng thức xảy ra khi và chỉ khi \(a=b=c\)
Đặt \(x=\sqrt{a};y=\sqrt{b};z=\sqrt{c}\)
Khi đó bđt đã tro chở thành:
\(\dfrac{yz}{x^2+3yz}+\dfrac{zx}{y^2+3zx}+\dfrac{xy}{z^2+3xy}\le\dfrac{3}{4}\)
\(\Leftrightarrow\dfrac{1}{3}-\dfrac{yz}{x^2+3yz}+\dfrac{1}{3}-\dfrac{zx}{y^2+3zx}+\dfrac{1}{3}-\dfrac{xy}{z^2+3xy}\ge1-\dfrac{3}{4}\)
\(\Leftrightarrow\dfrac{x^2}{x^2+3yz}+\dfrac{y^2}{y^2+3zx}+\dfrac{z^2}{z^2+3xy}\ge\dfrac{3}{4}\) (đpcm)
Câu 1 :
a) Cho 3 số dương \(0\le a\le b\le c\le1.CMR\dfrac{a}{bc+1}+\dfrac{b}{ac+1}+\dfrac{c}{ab+1}\le2\)
b. Cho a,b,c là 3 cạnh của một tam giác. CMR \(2\left(ab+bc+ca\right)>a^2+b^2+c^2\)
cho a,b và c là các số thực không âm thỏa mãn a+b+c=1
Chứng minh \(\dfrac{ab}{c+1}+\dfrac{bc}{a+1}+\dfrac{ca}{b+1}\le\dfrac{1}{4}\)
cho a,b,c >0 thỏa mãn \(a^2+b^2+c^2=3\) chứng minh rằng \(\dfrac{a}{ab+3}+\dfrac{b}{bc+3}+\dfrac{c}{ca+3}\le\dfrac{3}{4}\)