biết : \(5x^2-5xy+y^2+\dfrac{4}{x^2}\)
tính giá trị nhỏ nhất của tich xy
5x^2 - 5xy+y^2-4/x^2=0. Giá trị nhỏ nhất của xy
biết 5x2-5xy+y2+\(\frac{4}{x^2}\)=0
Giá trị nhỏ nhất của tích xy là
tính giá trị của đa thức `P=x^3+x^2y-5x^2-x^2y-xy^2+5xy+3(x+y)+2000` biết `x+y=5`
\(P=x^3+x^2y-5x^2-x^2y-xy^2+5xy+3\left(x+y\right)+2000\\ =x^2\left(x+y-5\right)-xy\left(x+y-5\right)+3\left(x+y-5\right)+2015\\ =x^2\left(5-5\right)-xy\left(5-5\right)+3\left(5-5\right)+2015\\ =2015\)
`P = x^3 + x^2 - 5x^2 - x^2y + xy^2 + 5xy + 3(x+y) + 2000`
`P = x^2(x+y) - (x+y)x^2 - xy(x+y) + (x+y)xy + 3(x+y) + 2000`
`P = 0 + 0 + 3.5 + 2000`
`P = 2015`
a,Tìm x,y,z biết: \(\dfrac{x^2}{2}+\dfrac{y^2}{3}+\dfrac{z^2}{4}=\dfrac{x^2+y^2+z^2}{5}\)
b,Tìm GTNN(Giá trị nhỏ nhất) của \(A=\dfrac{5x^2-x+1}{x^2}\)
tìm giá trị nhỏ nhất của biểu thức: A=\(\dfrac{1}{1+x^2}+\dfrac{4}{4+y^{2^{ }}}+xy\) với xy≥2
Lời giải:
Đặt $x=a; \frac{y}{2}=b$ thì bài toán trở thành:
Tìm min $A=\frac{1}{a^2+1}+\frac{1}{b^2+1}+2ab$ với $ab\geq 1$
----------------------------------
Với $ab\geq 1$, ta có BĐT khá quen thuộc:
$\frac{1}{a^2+1}+\frac{1}{b^2+1}\geq \frac{2}{ab+1}$ (để cm BĐT này bạn chỉ cần biến đổi tương đương)
Áp dụng vào bài và sử dụng thêm BĐT AM-GM:
$A\geq \frac{2}{ab+1}+2ab=\frac{2}{ab+1}+\frac{ab+1}{2}+\frac{3ab-1}{2}$
$\geq 2\sqrt{\frac{2}{ab+1}.\frac{ab+1}{2}}+\frac{3ab-1}{2}$
$=2+\frac{3ab-1}{2}\geq 2+\frac{3.1-1}{2}=3$
Vậy $A_{\min}=3$.
Cho \(x>2021\). Tính giá trị nhỏ nhất của \(Q=\dfrac{x^2+y^2}{xy}\)
a) Tìm giá trị nhỏ nhất của biểu thức: S= \(\dfrac{5x^4+4x^2+10}{x^4+2}\)
b) Tìm giá trị lớn nhất của biểu thức: T=\(\dfrac{2x^4-4x^2+8}{x^4+4}\)
c) Cho a là hằng số và a>0. Tìm giá trị nhỏ nhất của biểu thức: M=\(\dfrac{8y^8+2a\left(y-3\right)^2+2a^2}{4y^8+a^2}\)
Cho biểu thức K=\(\dfrac{y}{\sqrt{xy}-x}+\dfrac{x}{\sqrt{xy}+y}-\dfrac{x+y}{\sqrt{xy}}\left(x>y>0\right)\)
a, rút gọn biểu thức K
b, Tính giá trị của K biết \(2x^2+2y^2=5xy\)
c, Tìm giá trị nhỏ nhất của biểu thức M=\(x^2-\dfrac{K}{y\left(x+y\right)}\)
a) \(K=\dfrac{y}{\sqrt{x}\left(\sqrt{y}-\sqrt{x}\right)}+\dfrac{x}{\sqrt{y}\left(\sqrt{x}+\sqrt{y}\right)}-\dfrac{x+y}{\sqrt{xy}}\)
\(K=\dfrac{x\sqrt{x}\left(\sqrt{x}-\sqrt{y}\right)-y\sqrt{y}\left(\sqrt{x}+\sqrt{y}\right)-\left(x+y\right)\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}\)
\(K=\dfrac{x^2-x\sqrt{xy}-y^2-y\sqrt{xy}-x^2+y^2}{\sqrt{xy}\left(x-y\right)}\)
\(K=\dfrac{-\sqrt{xy}\left(x-y\right)}{\sqrt{xy}\left(x-y\right)}=-1\)
Có gì đó hơi sai sai
tìm giá trị nhỏ nhất của các biểu thức sau:
a A=\(\dfrac{\sqrt{x-9}}{5x}\)
b B=\(\dfrac{yz\sqrt{x-1}+xz\sqrt{y-2}+xy\sqrt{z-3}}{xyz}\)
b, đk: \(x\ge1,y\ge2,z\ge3\)
\(=>B=\dfrac{\sqrt{x-1}}{x}+\dfrac{\sqrt{y-2}}{y}+\dfrac{\sqrt{z-3}}{z}\)
đặt \(\left\{{}\begin{matrix}\sqrt{x-1}=a\\\sqrt{y-2}=b\\\sqrt{z-3}=c\end{matrix}\right.\)\(=>\left\{{}\begin{matrix}x=a^2+1\\y=b^2+1\\z=c^2+1\end{matrix}\right.\)\(=>a\ge0,b\ge0,c\ge0\)
B trở thành \(\dfrac{a}{a^2+1}+\dfrac{b}{b^2+1}+\dfrac{c}{c^2+1}\)
\(=\dfrac{a^{ }}{a^2+1}+\dfrac{a^2+1}{4}+\dfrac{b}{b^2+1}+\dfrac{b^2+1}{4}+\dfrac{c}{c^2+1}+\dfrac{c^2+1}{4}\)
\(-\left(\dfrac{a^2+b^2+c^2+3}{4}\right)\ge\sqrt{a}+\sqrt{b}+\sqrt{c}-\dfrac{a^2+b^2+c^2}{4}\)\(=0\)
dấu"=" xảy ra<=>\(a=0,b=0,c=0< =>x=1,y=2,z=3\)
Chắc bạn ghi nhầm đề, tìm GTLN mới đúng, chứ GTNN của các biểu thức này đều hiển nhiên bằng 0
\(A=\dfrac{3.\sqrt{x-9}}{15x}\le\dfrac{3^2+x-9}{30x}=\dfrac{1}{30}\)
\(A_{max}=\dfrac{1}{30}\) khi \(x=18\)
\(B=\dfrac{\sqrt{x-1}}{x}+\dfrac{\sqrt{y-2}}{y}+\dfrac{\sqrt{z-3}}{z}=\dfrac{1.\sqrt{x-1}}{x}+\dfrac{\sqrt{2}.\sqrt{y-2}}{\sqrt{2}y}+\dfrac{\sqrt{3}.\sqrt{z-3}}{\sqrt{3}z}\)
\(B\le\dfrac{1+x-1}{2x}+\dfrac{2+y-2}{2\sqrt{2}y}+\dfrac{3+z-3}{2\sqrt{3}z}=\dfrac{1}{2}+\dfrac{1}{2\sqrt{2}}+\dfrac{1}{2\sqrt{3}}\)
Dấu "=" xảy ra khi \(\left(x;y;z\right)=\left(2;4;6\right)\)
đề bài là tìm gt lớn nhất nhé mọi người,tớ ghi nhầm