Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
28 Nhật Quý
Xem chi tiết
Nguyễn Tuấn Anh
6 tháng 3 2023 lúc 13:56

học tốt nhé !

28 Nhật Quý
Xem chi tiết
Ng Bảo Ngọc
6 tháng 3 2023 lúc 12:17

2 nghiệp pt phải:

 (2m - 1)2-4(m2 - 1)≥0

Vì x1 là nghiệm nên

x21−(2m−1)x1+m2−1=0

<=> x12−(2m−1)x1+m2−1=0

<=>x12−2mx1+m2=x1+1

<=> 9m2=0 <=>m=0

#YQ

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
24 tháng 5 2017 lúc 9:00

Phương trình đã cho có hai nghiệm khi và chỉ khi Δ ' ≥ 0 ⇔ − 2 m + 4 ≥ 0 ⇔ m ≤ 2     1 .

Theo hệ thức Vi-ét:  x 1 + x 2 = 2 m − 1 x 1 . x 2 = m 2 − 3

Mà  x 1 2 + 4 x 1 + 2 x 2 − 2 m x 1 = 1 ⇔ x 1 x 1 − 2 m + 2 + 2 x 1 + x 2 = 1 ⇔ − x 1 . x 2 + 2 x 1 + x 2 = 1 ⇔ − m 2 + 3 + 4 m − 1 = 1 ⇔ m 2 − 4 m + 2 = 0 ⇔ m = 2 + 2 m = 2 − 2      2

Từ (1) và (2) suy ra  m = 2 − 2

Phương Uyên
Xem chi tiết
Vô danh
11 tháng 3 2022 lúc 12:52

Bài 1:

a, Thay m=-1 vào (1) ta có:
\(x^2-2\left(-1+1\right)x+\left(-1\right)^2+7=0\\ \Leftrightarrow x^2+1+7=0\\ \Leftrightarrow x^2+8=0\left(vô.lí\right)\)

Thay m=3 vào (1) ta có:

\(x^2-2\left(3+1\right)x+3^2+7=0\\ \Leftrightarrow x^2-2.4x+9+7=0\\ \Leftrightarrow x^2-8x+16=0\\ \Leftrightarrow\left(x-4\right)^2=0\\ \Leftrightarrow x-4=0\\ \Leftrightarrow x=4\)

b, Thay x=4 vào (1) ta có:

\(4^2-2\left(m+1\right).4+m^2+7=0\\ \Leftrightarrow16-8\left(m+1\right)+m^2+7=0\\ \Leftrightarrow m^2+23-8m-8=0\\ \Leftrightarrow m^2-8m+15=0\\ \Leftrightarrow\left(m^2-3m\right)-\left(5m-15\right)=0\\ \Leftrightarrow m\left(m-3\right)-5\left(m-3\right)=0\\ \Leftrightarrow\left(m-3\right)\left(m-5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}m=3\\m=5\end{matrix}\right.\)

c, \(\Delta'=\left[-\left(m+1\right)\right]^2-\left(m^2+7\right)=m^2+2m+1-m^2-7=2m-6\)

Để pt có 2 nghiệm thì \(\Delta'\ge0\Leftrightarrow2m-6\ge0\Leftrightarrow m\ge3\)

Theo Vi-ét:\(\left\{{}\begin{matrix}x_1+x_2=2m+2\\x_1x_2=m^2+7\end{matrix}\right.\)

\(x_1^2+x_2^2=0\\ \Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=0\\ \Leftrightarrow\left(2m+2\right)^2-2\left(m^2+7\right)=0\\ \Leftrightarrow4m^2+8m+4-2m^2-14=0\\ \Leftrightarrow2m^2+8m-10=0\\ \Leftrightarrow\left[{}\begin{matrix}m=1\left(ktm\right)\\m=-5\left(ktm\right)\end{matrix}\right.\)

\(x_1-x_2=0\\ \Leftrightarrow\left(x_1-x_2\right)^2=0\\ \Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2=0\\ \Leftrightarrow\left(2m+2\right)^2-4\left(m^2+7\right)=0\\ \Leftrightarrow4m^2+8m+4-4m^2-28=0\\ \Leftrightarrow8m=28=0\\ \Leftrightarrow m=\dfrac{7}{2}\left(tm\right)\)

Vô danh
11 tháng 3 2022 lúc 13:03

Bài 2:

a,Thay m=-2 vào (1) ta có:

\(x^2-2x-\left(-2\right)^2-4=0\\ \Leftrightarrow x^2-2x-4-4=0\\ \Leftrightarrow x^2-2x-8=0\\ \Leftrightarrow\left[{}\begin{matrix}x=4\\x=-2\end{matrix}\right.\)

b, \(\Delta'=\left(-m\right)^2-\left(-m^2-4\right)\ge0=m^2+m^2+4=2m^2+4>0\)

Suy ra pt luôn có 2 nghiệm phân biệt

Theo Vi-ét:\(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=-m^2-4\end{matrix}\right.\)

\(x_1^2+x_2^2=20\\ \Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=20\\ \Leftrightarrow2^2-2\left(-m^2-4\right)=20\\ \Leftrightarrow4+2m^2+8-20=0\\ \Leftrightarrow2m^2-8=0\\ \Leftrightarrow m=\pm2\)

\(x_1^3+x_2^3=56\\ \Leftrightarrow\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)=56\\ \Leftrightarrow2^3-3\left(-m^2-4\right).2=56\\ \Leftrightarrow8-6\left(-m^2-4\right)-56\\ =0\\ \Leftrightarrow8+6m^2+24-56=0\\ \Leftrightarrow6m^2-24=0\\ \Leftrightarrow m=\pm2\)

\(x_1-x_2=10\\ \Leftrightarrow\left(x_1-x_2\right)^2=100\\ \Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2-100=0\\ \Leftrightarrow2^2-4\left(-m^2-4\right)-100=0\\ \Leftrightarrow4+4m^2+16-100=0\\ \Leftrightarrow4m^2-80=0\\ \Leftrightarrow m=\pm2\sqrt{5}\)

Vũ Anh Tú
Xem chi tiết
2611
29 tháng 5 2023 lúc 20:09

Ptr có nghiệm `<=>\Delta' > 0`

   `<=>(-m)^2-2m+1 > 0`

  `<=>(m-1)^2 > 0<=>m-1 ne 0<=>m ne 1`

`=>` Áp dụng Viét có: `{(x_1+x_2=-b/a=2m),(x_1.x_2=c/a=2m-1):}`

Ta có: `(x_1 ^2-2mx_1 +3)(x_2 ^2-2mx_2 -2)=50`

`<=>[x_1 ^2-(x_1+x_2)x_1+3][x_2 ^2-(x_1+x_2)x_2 -2]=50`

`<=>(-x_1.x_2+3)(-x_1.x_2-2)=50`

`<=>(1-2m+3)(1-2m-2)=50`

`<=>(4-2m)(-1-2m)=50`

`<=>-4-8m+2m+4m^2=50`

`<=>4m^2-6m-54=0`

`<=>4m^2+12m-18m-54=0`

`<=>(m+3)(4m-18)=0<=>[(m=-3),(m=9/2):}`  (t/m)

Limited Edition
Xem chi tiết
Akai Haruma
17 tháng 3 2021 lúc 18:04

Lời giải:

Để PT có 2 nghiệm $x_1,x_2$ thì:

$\Delta'=(m+1)^2-(m^2-1)>0\Leftrightarrow 2m+2>0\Leftrightarrow m>-1$

Áp dụng định lý Viet:

$x_1+x_2=2(m+1)$ và $x_1x_2=m^2-1$

Khi đó, để $x_1^2+x_2^2=x_1x_2+8$

$\Leftrightarrow (x_1+x_2)^2-2x_1x_2=x_1x_2+8$

$\Leftrightarrow (x_1+x_2)^2=3x_1x_2+8$

$\Leftrightarrow 4(m+1)^2=3(m^2-1)+8$

$\Leftrightarrow m^2+8m-1=0$

$\Leftrightarrow m=-4\pm \sqrt{17}$. Vì $m>-1$ nên $m=-4+\sqrt{17}$

Vangull
Xem chi tiết
Lê Thị Thục Hiền
30 tháng 5 2021 lúc 16:30

Để pt có nghiệm \(\Leftrightarrow\Delta=-4m+5\ge0\) \(\Leftrightarrow m\le\dfrac{5}{4}\)

\(\left(x_1-x_2\right)^2=x_1-3x_2\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2=x_1-3x_2\)

\(\Leftrightarrow\left(2m-1\right)^2-4\left(m^2-1\right)=x_1-3x_2\)

\(\Leftrightarrow-4m+5=x_1-3x_2\) (1)

Kết hợp (1) và viet có:  \(\left\{{}\begin{matrix}x_1+x_2=2m-1\\x_1-3x_2=5-4m\\x_1x_2=m^2-1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}4x_2=6m-6\\x_1-3x_2=5-4m\\x_1x_2=m^2-1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x_2=\dfrac{3m-3}{2}\\x_1=5-4m+3x_2=\dfrac{m+1}{2}\\x_1x_2=m^2-1\end{matrix}\right.\)

\(\Rightarrow\left(\dfrac{3m-3}{2}\right)\left(\dfrac{m+1}{2}\right)=m^2-1\)

\(\Leftrightarrow1=m^2\) \(\Leftrightarrow\left[{}\begin{matrix}m=1\\m=-1\end{matrix}\right.\) (thỏa mãn)

Vậy...

truong thi tuyet
Xem chi tiết
Vũ Trọng Nghĩa
30 tháng 5 2016 lúc 22:12

\(\frac{3}{2}< m< \frac{9}{2}\)

Vũ Trọng Nghĩa
30 tháng 5 2016 lúc 22:15

xin lỗi đánh nhầm  ta tìm được: 4  < m < 9         bạn nhé 

Vangull
Xem chi tiết
Nguyễn Lê Phước Thịnh
13 tháng 5 2021 lúc 21:40

Ta có: \(\Delta=\left(2m-1\right)^2-4\cdot1\cdot\left(m^2-2\right)\)

\(=4m^2-4m+1-4m^2+8\)

\(=-4m+9\)

Để phương trình có hai nghiệm phân biệt thì \(\Delta>0\)

\(\Leftrightarrow-4m+9>0\)

\(\Leftrightarrow-4m>-9\)

hay \(m< \dfrac{9}{4}\)

Áp dụng hệ thức Vi-et, ta được:

\(\left\{{}\begin{matrix}x_1+x_2=2m-1\\x_1\cdot x_2=m^2-2\end{matrix}\right.\)

Ta có: \(\left|x_1-x_2\right|=\sqrt{5}\)

\(\Leftrightarrow\sqrt{\left(x_1-x_2\right)^2}=\sqrt{5}\)

\(\Leftrightarrow\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}=\sqrt{5}\)

\(\Leftrightarrow\left(2m-1\right)^2-4\cdot\left(m^2-2\right)=5\)

\(\Leftrightarrow4m^2-4m+1-4m^2+8=5\)

\(\Leftrightarrow-4m=-4\)

hay m=1(thỏa ĐK)

Vậy: m=1

Yeutoanhoc
13 tháng 5 2021 lúc 21:38

PT có 2 nghiệm phân biệt

`<=>Delta>0`

`<=>(2m-1)^2-4(m^2-2)>0`

`<=>4m^2-4m+1-4m^2+8>0`

`<=>-4m+9>0`

`<=>m<9/4`

Áp dụng vi-ét:`x_1+x_2=2m-1,x_1.x_2=m^2-2`

`|x_1-x_2|=\sqrt5`

`<=>(x_1-x_2)^2=5`

`<=>(x_1+x_2)^2-4(x_1.x_2)=5`

`<=>4m^2-4m+1-4m^2+8=5`

`<=>-4m+8=5`

`<=>4m=3`

`<=>m=3/4(tm)`

Vậy `m=3/4=>|x_1-x_2|=\sqrt5`

Yeutoanhoc
13 tháng 5 2021 lúc 21:41

PT có 2 nghiệm phân biệt

`<=>Delta>0`

`<=>(2m-1)^2-4(m^2-2)>0`

`<=>4m^2-4m+1-4m^2+8>0`

`<=>-4m+9>0`

`<=>m<9/4`

Áp dụng vi-ét:`x_1+x_2=2m-1,x_1.x_2=m^2-2`

`|x_1-x_2|=\sqrt5`

`<=>(x_1-x_2)^2=5`

`<=>(x_1+x_2)^2-4(x_1.x_2)=5`

`<=>4m^2-4m+1-4m^2+8=5`

`<=>-4m+9=5`

`<=>4m=4`

`<=>m=1(tm)`

Vậy `m=1=>|x_1-x_2|=\sqrt5`

Lục Ninh
Xem chi tiết
Akai Haruma
3 tháng 4 2022 lúc 12:43

Lời giải:
Để pt có 2 nghiệm thì:
$\Delta'=(m^2+2m)^2-(m^2+7)\geq 0$

$\Leftrightarrow m^4+4m^3+3m^2-7\geq 0(*)$
Áp dụng định lý Viet:

$x_1+x_2=2m(m+2)$

$x_1x_2=m^2+7$

Khi đó:

$x_1x_2-2(x_1+x_2)=4$

$\Leftrightarrow m^2+7-4m(m+2)=4$

$\Leftrightarrow -3m^2-8m+3=0$

$\Leftrightarrow (1-3m)(m+3)=0$

$\Leftrightarrow m=\frac{1}{3}$ hoặc $m=-3$

Thử lại với $(*)$ thấy đều không thỏa mãn

Vậy không tồn tại $m$ thỏa mãn đkđb