Tính nhanh: A= 3/3.5+ 3/5.7+3/7.9 +...+ 3/97.99
Tính:
a) M=2/3.5+2/5.7+2/7.9+...+2/97.99
b) N=3/5.7+3/7.9+3/9.11+...+3/197.199
a.
\(M=1.\left[\frac{1}{3}-\frac{1}{5}+.....\frac{1}{97}-\frac{1}{99}\right]\)
\(M=\frac{1}{3}-\frac{1}{99}=\frac{32}{99}\)
b.
\(N=\frac{3}{2}.\left[\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{197}-\frac{1}{199}\right]\)
\(N=\frac{3}{2}.\left[\frac{1}{5}-\frac{1}{199}\right]=\frac{291}{995}\)
mk đầu tiên nha bạn
Tính tổng: M= 3/3.5 + 3/5.7 + 3/7.9 +.......+ 3/95.97 + 3/97.99
Giải:
M=\(\dfrac{3}{3.5}+\dfrac{3}{5.7}+\dfrac{3}{7.9}+...+\dfrac{3}{95.97}+\dfrac{3}{97.99}\)
M=\(\dfrac{3}{2}.\left(\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{95.97}+\dfrac{2}{97.99}\right)\)
M=\(\dfrac{3}{2}.\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{95}-\dfrac{1}{97}+\dfrac{1}{97}-\dfrac{1}{99}\right)\)
M=\(\dfrac{3}{2}.\left(\dfrac{1}{3}-\dfrac{1}{99}\right)\)
M=\(\dfrac{3}{2}.\dfrac{32}{99}\)
M=\(\dfrac{16}{33}\)
Chúc bạn học tốt!
M= 3/3.5 + 3/5.7 + 3/7.9 +.......+ 3/95.97 + 3/97.99
=3.1/2 ( 2/3.5+...+2/97.99)
=3.1/2(1/3- 1/5+...+1/97+1/99)
=3.1/2(1/3- 1/99)
=(3/2).(32/99)
=96/891
n/xét
3/3.5=(3/3-3/5).1/2
3/5.7=(3/5-3/7).1/2
...
3/97.99=(3/97-3/99).1/2
vậy M=(3/3-3/5).1/2+(3/5-3/7).1/2+...+(3/97-3/99).1/2
⇒M=1/2.(3/3-3/7+3/5-3/7+...+3/97-3/99)
=1/2.(3/3-3/99)
=1/2.32/33
M =16/33
VẬY M=16/33
a) M = 2/3.5 + 2/5.7 + 2/7.9 + ... + 2/97.99
b) N = 3/5.7 + 3/7.9 + 3/9.11 + ... + 3/197.199
c) P = 1/1.2 + 2/2.4 + 3/4.7 + ... + 10/46.56
M=3/3.5+3/5.7+3/7.9+...+3/97.99
tính M
M = 1/3-1/5+1/5-1/7+...+1/97-1/99
= 1/3-1/99
=33/99-1/99
=32/99
M=1/2.(3/3-3/5+3/5-3/7+3/7-3/9+......+3/97-3/99)
M=1/2.(1-3/99)
M=1/2.32/33=16/33
A..... nhầm bn thay 1/2 thành 3/2 rồi tính tiếp nhá
-2/3+4/3.5+4/5.7+4/7.9+....+4/97.99+101/99
B=-2/3+4/3.5+4/5.7+4/7.9+.......+4/97.99+101/99
1.Tính hợp lí
a/ 2/3.5 + 2/5.7 + 2/7.9 +...+2/97.99
b/ 1/3.5 + 1/5.7 + 1/7.9 +...+1/97.99
c/1/18 + 1/54 + 1/108 +...+1/990
2.Chứng minh rằng: 1/14 + 1/42 + 1/43 +...+1/79 + 1/80 > 7.12
Bài 1:
a: \(\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+\cdots+\frac{2}{97\cdot99}\)
\(=\frac13-\frac15+\frac15-\frac17+\cdots+\frac{1}{97}-\frac{1}{99}\)
\(=\frac13-\frac{1}{99}=\frac{32}{99}\)
b: \(\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+\cdots+\frac{1}{97\cdot99}\)
\(=\frac12\left(\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+\cdots+\frac{2}{97\cdot99}\right)\)
\(=\frac12\left(\frac13-\frac15+\frac15-\frac17+\cdots+\frac{1}{97}-\frac{1}{99}\right)\)
\(=\frac12\left(\frac13-\frac{1}{99}\right)=\frac12\cdot\frac{32}{99}=\frac{16}{99}\)
c: \(\frac{1}{18}+\frac{1}{54}+\frac{1}{108}+\cdots+\frac{1}{990}\)
\(=\frac{1}{3\cdot6}+\frac{1}{6\cdot9}+\frac{1}{9\cdot12}+\cdots+\frac{1}{30\cdot33}\)
\(=\frac13\left(\frac{3}{3\cdot6}+\frac{3}{6\cdot9}+\cdots+\frac{3}{30\cdot33}\right)\)
\(=\frac13\left(\frac13-\frac16+\frac16-\frac19+\cdots+\frac{1}{30}-\frac{1}{33}\right)\)
\(=\frac13\left(\frac13-\frac{1}{33}\right)=\frac13\cdot\frac{10}{33}=\frac{10}{99}\)
Bài 2:
Sửa đề: \(\frac{1}{41}+\frac{1}{42}+\cdots+\frac{1}{80}>\frac{7}{12}\)
Đặt \(A=\frac{1}{41}+\frac{1}{42}+\cdots+\frac{1}{80}\)
Ta có: \(\frac{1}{41}>\frac{1}{60}\)
\(\frac{1}{42}>\frac{1}{60}\)
...
\(\frac{1}{59}>\frac{1}{60}\)
\(\frac{1}{60}=\frac{1}{60}\)
DO đó: \(\frac{1}{41}+\frac{1}{42}+\cdots+\frac{1}{59}+\frac{1}{60}>\frac{1}{60}+\frac{1}{60}+\cdots+\frac{1}{60}+\frac{1}{60}=\frac{20}{60}=\frac13\) (1)
Ta có: \(\frac{1}{61}>\frac{1}{80}\)
\(\frac{1}{62}>\frac{1}{80}\)
...
\(\frac{1}{79}>\frac{1}{80}\)
\(\frac{1}{80}=\frac{1}{80}\)
Do đó: \(\frac{1}{61}+\frac{1}{62}+\cdots+\frac{1}{80}>\frac{1}{80}+\frac{1}{80}+\cdots+\frac{1}{80}=\frac{20}{80}=\frac14\) (2)
Từ (1),(2) suy ra \(\frac{1}{41}+\frac{1}{42}+\cdots+\frac{1}{80}>\frac13+\frac14\)
=>\(A>\frac13+\frac14\)
=>A>7/12
Tính GTBT:1.3/3.5+2.4/5.7+3.5/7.9+...+48.50/97.99
các bạn cho mk hỏi câu này
2/3.5+2/5.7+2/7.9+...+2/97.99
thì mk sẽ viết thành
1/3.5+1/5.7+1/7.9+...+1/97.99
hay
2.(1/3.5+1/5.7+1/7.9+...+1/97.99)
giúp mk với
\(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{97.99}\)
\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{97}-\frac{1}{99}\)
\(=\frac{1}{3}+\left(\frac{1}{5}-\frac{1}{5}\right)+\left(\frac{1}{7}-\frac{1}{7}\right)+...+\left(\frac{1}{97}-\frac{1}{97}\right)-\frac{1}{99}\)
\(=\frac{1}{3}-\frac{1}{99}=\frac{32}{99}\)
~ Hok tốt ~
\(\)
Viết thành 2 . (1/3.5 + 1/5.7 + 1/7.9 + ...+ 1/97.99