cho đa thức P(x)=x^2-2x+3+x^3 và Q(x)=2x^2-x^3+x-3 tính giá trị của da thức H(x)=P(x)+Q(x) tại x=-1
cho đa thức P(x)=4x^3-\(\frac{3}{2}\) x^2-x+10 và đa thức Q(x)=10-1/2x-2x^2+4x^3
1 Tính giá trị của đa thức P(x) tại x =-2
2 tìm đa thức H(x) sao cho H(x)+Q(x)=P(x)
Chứng minh rằng H(x) nhận giá trị nguyên với mọi x
* \(P\left(x\right)=4x^3-\frac{3}{2}x^2-x+10\)
\(P\left(-2\right)=4\cdot\left(-2\right)^3-\frac{3}{2}\cdot\left(-2\right)^2-\left(-2\right)+10\)
\(=4\cdot\left(-8\right)-6+2+10\)
\(=-26\)
* H(x) + Q(x) = P(x)
<=> H(x) = P(x) - Q(x)
H(x) = \(4x^3-\frac{3}{2}x^2-x+10-\left(10-\frac{1}{2}x-2x^2+4x^3\right)\)
= \(4x^3-\frac{3}{2}x^2-x+10-10+\frac{1}{2}x+2x^2-4x^3\)
= \(\frac{1}{2}x^2-\frac{1}{2}x\)
* H(x) luôn nguyên với mọi x
Chỗ này bạn xem lại đề
a, Ta có : \(P\left(-2\right)=4\left(-2\right)^3-\frac{3}{2}\left(-2\right)^2-\left(-2\right)+10\)
\(=-32.\left(-6\right)+2+10=192+2+10=204\)
b, \(H\left(x\right)+Q\left(x\right)=P\left(x\right)\)
\(H\left(x\right)=P\left(x\right)-Q\left(x\right)\)
\(H\left(x\right)=4x^3-\frac{3}{2}x^2-x+10-10+\frac{1}{2}x+2x^2-4x^3\)
\(=\frac{1}{2}x^2-\frac{1}{2}x\)
a, Với \(x=-2\)suy ra :
\(P\left(x\right)=4\left(-2\right)^3-\frac{3}{2}\left(-2\right)^2-\left(-2\right)+10\)
\(=4.8-\frac{3}{2}.4+12=32-6+12\)
\(=32+6=38\)
Vậy với \(x=-2\)thì \(P\left(x\right)=38\)
b, Ta có : \(H\left(x\right)+Q\left(x\right)=P\left(x\right)\)
\(< =>H\left(x\right)=P\left(x\right)-Q\left(x\right)\)
\(< =>H\left(x\right)=\left(4x^3-\frac{3}{2}x^2-x+10\right)-\left(10-\frac{1}{2}x-2x^2+4x^3\right)\)
\(< =>H\left(x\right)=\left(4x^3-4x^3\right)+\left(-\frac{3}{2}x^2+2x^2\right)+\left(-x+\frac{1}{2}x\right)+\left(10-10\right)\)
\(< =>H\left(x\right)=\frac{1}{2}x^2-\frac{1}{2}x=\left(\frac{1}{2}x\right)\left(x-1\right)\)
tìm bậc của đa thức q(x) biết q(x)=x.(x^2/2-1/2x^3+1/2x)-(x/3-1/2x^4+x^2-x/3) . và cm đa thức q(x) nhận giá trị nguyên vs mọi số nguyên x
cho các đa thức P (x) =-5x^3+3x^2+2x+5
Q(x)= -5x^3+6x^2+2x+5
tính giá trị đa thức P(x)+Q(x) tại x =1/2
tìm x để Q(x)-P(x)= 6
\(P\left(\dfrac{1}{2}\right)+Q\left(\dfrac{1}{2}\right)=-5.\left(\dfrac{1}{2}\right)^3+3\left(\dfrac{1}{2}\right)^2+\dfrac{2}{2}+5-5\left(\dfrac{1}{2}\right)^3+6\left(\dfrac{1}{2}\right)^2+\dfrac{2}{2}+5\)
\(P\left(\dfrac{1}{2}\right)+Q\left(\dfrac{1}{2}\right)=-\dfrac{5.1}{8}+\dfrac{3.1}{4}+6-\dfrac{5.1}{8}+\dfrac{6.1}{4}+6\)
\(P\left(\dfrac{1}{2}\right)+Q\left(\dfrac{1}{2}\right)=-\dfrac{5}{8}+\dfrac{3}{4}+6-\dfrac{5}{8}+\dfrac{3}{2}+6\)
\(P\left(\dfrac{1}{2}\right)+Q\left(\dfrac{1}{2}\right)=13\)
\(Q\left(x\right)-P\left(x\right)=6\)
\(-5x^3+6x^2+2x+5+5x^3-3x^2-2x-5=6\)
\(3x^2=6\)
\(x^2=2\)
\(=>x=\pm\sqrt{2}\)
cho 2 đa thức: A(x) = 2x^2- x^3+x- 3
B(x) = x^3-x^2 +4-3x
a, tính giá trị P(x)= A(x)+ B(x)
b, cho đa thức Q(x)= 5x^2 - 5 +a^2+ ax. Tìm các giá trị của a để Q(x) có nghiệm x= -1
a) A(x)+B(x)=2x2-x3+x-3+x3-x2+4-3x
A(x)+B(x)=1x2-2x+1
a) Ta có: P(x)=A(x)+B(x)
\(=2x^2-x^3+x-3+x^3-x^2+4-3x\)
\(=x^2-2x+1\)
b) Thay x=-1 vào Q(x), ta được:
\(5\cdot\left(-1\right)^2-5+a^2+a\cdot\left(-1\right)=0\)
\(\Leftrightarrow a^2-a=0\)
\(\Leftrightarrow a\left(a-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=0\\a=1\end{matrix}\right.\)
Mong mọi người giúp mình với ạ. Hiện mình đang cần gấp lắm...
Cho hai đa thức sau: P(x) =\(4\frac{4}{5}\) \(5x^3\)5x^3 - 24/5 x^2 + 2x - 1; và Q(x) = 5x^3 - 4/5 x^2 - 2x - 8
a) Tính A(x) = P(x) + Q(x) và B(x) = P(x) - Q(x)
b) Tính giá trị của A(x) tại x = -1/2
c) Tìm nghiệm của đa thức M(x) = A(x) - 10x^3 - 2/5 x^2 +18
d) Tìm giá trị lớn nhất của đa thức M(x)
chị học nhanh vĩa
dạy em học với
Bài 2 Cho các đa thức : P(x)= 15- 4x mũ 3+ 3x bình +2x - x mũ 3 - 10
Q(x)= 5+4x mũ 3 +6x bình-5x- 9x mũ 3+7x
a) Thu gọn mỗi đa thức trên
b)Tính giá trị của đa thức P(x)+Q(x) tại x=1 phần 2
c)Tìm x để Q(x)-P(x)=6
a: \(P\left(x\right)=-5x^3+3x^2+2x+5\)
\(Q\left(x\right)=-5x^3+6x^2+x+5\)
b: \(H\left(x\right)=Q\left(x\right)+P\left(x\right)=-10x^3+9x^2+3x+10\)
Khi x=1/2 thì \(H\left(x\right)=-10\cdot\dfrac{1}{8}+\dfrac{9}{4}+\dfrac{3}{2}+10=\dfrac{25}{2}\)
Cho các đa thức :
F(x)=\(-x^4-3x^3+x^2-2x+5\)
G(x)=\(6^4+x^3-2x^2-3x-3\)
H(x)=\(-5x^4+2x^3+2x^2+9x+3\)
a)Tính F(x)+G(x)+H(x) và 2.F(x) - [G(x)+H(x)]
b)Tính giá trị F(-1),G(\(\dfrac{-1}{2}\));H(2)
c)Chứng minh rằng F(x)+G(x)+H(x) >0
d)Tìm x để giá trị của F(x)+G(x)+H(x) bằng 1
Giải như sau.
(1)+(2)⇔x2−2x+1+√x2−2x+5=y2+√y2+4⇔(x2−2x+5)+√x2−2x+5=y2+4+√y2+4⇔√y2+4=√x2−2x+5⇒x=3y(1)+(2)⇔x2−2x+1+x2−2x+5=y2+y2+4⇔(x2−2x+5)+x2−2x+5=y2+4+y2+4⇔y2+4=x2−2x+5⇒x=3y
⇔√y2+4=√x2−2x+5⇔y2+4=x2−2x+5, chỗ này do hàm số f(x)=t2+tf(x)=t2+t đồng biến ∀t≥0∀t≥0
Công việc còn lại là của bạn !
Cho các đa thức P(x) = 2x^2 - 3x -4. Q(x) = x^2 - 3x + 5 a) Tính giá trị của đa thức P(x) tại x =1 b) Tìm H(x) =P(x) - Q(x) c)Tìm nghiệm của đa thức H(x)
a, \(P\left(1\right)=2-3-4=-5\)
b, \(H\left(x\right)=P\left(x\right)-Q\left(x\right)=x^2-9\)
c, Ta có \(H\left(x\right)=\left(x-3\right)\left(x+3\right)=0\Leftrightarrow x=3;x=-3\)
Bài 1 (2,5 điểm): Cho các đa thức P(x) = - x ^ 3 + 3x ^ 2 + x - 1 + 2x ^ 3 - x ^ 2 Q(x) = - 3x ^ 3 - x ^ 2 + 2x ^ 3 + 3x + 3 - 4x a) Thu gọn và sắp xếp các đa thức trên theo lũy thừa giảm của biến b) Tìm đa thức H(x) = P(x) + Q(x) c) Tính H(- 1) và H(1) d) Chứng tỏ rằng đa thức cH(x) không có nghiệm.
a: P(x)=-x^3+2x^3-x^2+3x^2+x-1=x^3+2x^2+x-1
Q(x)=-3x^3+2x^3-x^2+3x-4x+3=-x^3-x^2-x+3
b: H(x)=P(x)+Q(X)
=x^3+2x^2+x-1-x^3-x^2-x+3
=x^2+2
c: H(-1)=H(1)=1+2=3
d: H(x)=x^2+2>=2>0 với mọi x
=>H(x) ko có nghiệm