giai pt x- căn(4x^2-6x+9)=3
Giải pt
a)căn x^2-4x+4=x+3
a)căn 9x^2+12x+4=4x
a)căn x^2-8x+16=4-x
a)căn 9x^2-6x+1-5x=2
a)căn 25-10x+x^2-2x=1
a)căn 25x^2-30x+9=x-1
a)căn x^2-6x+9-x-5=0
a)2x^2-căn 9x^2-6x+1=-5
b)căn x+5=căn 2x
b)căn 2x-1=căn x-1
b)căn 2x+5=căn 1-x
b)căn x^2-x=căn 3-x
b)căn 3x+1=căn 4x-3
b)căn x^2-x=3x-5
b)căn 2x^2-3=căn 4x-3
b)căn x^2-x-6=căn x-3
Giúp mình với ạ
a) \(\sqrt[]{x^2-4x+4}=x+3\)
\(\Leftrightarrow\sqrt[]{\left(x-2\right)^2}=x+3\)
\(\Leftrightarrow\left|x-2\right|=x+3\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=x+3\\x-2=-\left(x+3\right)\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}0x=5\left(loại\right)\\x-2=-x-3\end{matrix}\right.\)
\(\Leftrightarrow2x=-1\Leftrightarrow x=-\dfrac{1}{2}\)
b) \(2x^2-\sqrt[]{9x^2-6x+1}=5\)
\(\Leftrightarrow2x^2-\sqrt[]{\left(3x-1\right)^2}=5\)
\(\Leftrightarrow2x^2-\left|3x-1\right|=5\)
\(\Leftrightarrow\left|3x-1\right|=2x^2-5\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-1=2x^2-5\\3x-1=-2x^2+5\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}2x^2-3x-4=0\left(1\right)\\2x^2+3x-6=0\left(2\right)\end{matrix}\right.\)
Giải pt (1)
\(\Delta=9+32=41>0\)
Pt \(\left(1\right)\) \(\Leftrightarrow x=\dfrac{3\pm\sqrt[]{41}}{4}\)
Giải pt (2)
\(\Delta=9+48=57>0\)
Pt \(\left(2\right)\) \(\Leftrightarrow x=\dfrac{-3\pm\sqrt[]{57}}{4}\)
Vậy nghiệm pt là \(\left[{}\begin{matrix}x=\dfrac{3\pm\sqrt[]{41}}{4}\\x=\dfrac{-3\pm\sqrt[]{57}}{4}\end{matrix}\right.\)
6x+căn của(x+2)+2 căn của(3-x)=8 căn của(6+x-x^2)...giai pt bang cach dat an phu
giải ptvt:
căn (x^2-4x+5)+căn( x^2-4x+8)+căn (x^2-4x+9)= 3+căn 5
căn (2-x^2+2x)+căn(-x^2-6x-8)=1+căn 3
căn (9x^2-6x+2)+căn(45x^2-30x+9)=căn(6x-9x^2+8)
giải ptvt:
căn (x^2-4x+5)+căn( x^2-4x+8)+căn (x^2-4x+9)= 3+căn 5
căn (2-x^2+2x)+căn(-x^2-6x-8)=1+căn 3
căn (9x^2-6x+2)+căn(45x^2-30x+9)=căn(6x-9x^2+8)
Giai pt\(4x^2+6x+7+\sqrt{2x^2+3x+9}=15\)
Đặt \(2x^2+3x=t\)ta có :
\(2\left(t+\frac{7}{2}\right)+\sqrt{t+9}=15\)
\(\Leftrightarrow2t+7+\sqrt{t+9}=15\)
\(\Leftrightarrow\sqrt{t+9}=8-2t\)
Bình phương 2 vế : \(t+9=4t^2-32t+64\)
\(\Leftrightarrow-4t^2+33t-55=0\)
Ta có : \(\Delta=33^2-4.\left(-4\right).\left(-55\right)=209\)
\(x_1=\frac{-33-\sqrt{209}}{-8};x_2=\frac{-33+\sqrt{209}}{-8}\)
Bài này nghiệm khá xấu mình gợi ý nhé !
ĐKXĐ : \(x\inℝ\)
Pt ban đầu có thể viết lại :
\(2.\left(2x^2+3x+9\right)+2\sqrt{2x^2+3x+9}=26\)
Đặt \(\sqrt{2x^2+3x+9}=a\left(a>0\right)\)
Pt trên trở thành :
\(2.a^2+2a=26\)
\(\Leftrightarrow a^2+a-13=0\)
\(\Leftrightarrow a=\frac{-1\pm\sqrt{53}}{2}\)
Từ đây thì dễ dàng tính được x nhưng kết quả rất xấu.....
KL lại : \(t_1=\frac{-33-\sqrt{209}}{-8};t_2=\frac{-33+\sqrt{209}}{-8}\)
Giải các pt sau:
a, căn x2+4x+4=2x+1
b, căn 4x2-12x+9=x-3
a)\(ĐKXĐ:x\ge\frac{-1}{2}\)
\(\sqrt{x^2+4x+4}=2x+1\)
\(\Leftrightarrow\sqrt{\left(x+2\right)^2}=2x+1\)
\(\Leftrightarrow x+2=2x+1\)
\(\Leftrightarrow-x=-1\)
\(\Leftrightarrow x=1\)
Vậy nghiệm duy nhất của phương trình là 1.
b)\(ĐKXĐ:x\ge3\)
\(\sqrt{4x^2-12x+9}=x-3\)
\(\Leftrightarrow\sqrt{\left(2x-3\right)^2}=x-3\)
\(\Leftrightarrow2x-3=x-3\)
\(\Leftrightarrow2x=x\)
\(\Leftrightarrow x=0\)(không t/m đkxđ)
Vậy phương trình vô nghiệm
Giải pt
a1)1/3 căn x-2 -2/3 căn 9x-18 +6 căn x-2/81 =-4
a2)căn 9x+27 +4 căn x+3 -3/4 căn 16x+48 =0
a3)căn 1-x +căn 4-4x -1/3 căn 16-16x +5=0
a4)căn x-3=3-x
a5)căn x^2-1 -x^2+1=0
b1)căn x^2-2x+1 =x^2-1
b2)căn 4x^2-9 = 2 căn 2x+3
b3)3 căn x^2-1 +2 căn x+1=0
b4)căn x^2-4 +căn x^2+4x+4 =0
b5)căn 4x^2-20x+25 +4x^2=25
Giúp mình với
a)căn x^2-4x+4=3x+1
b)căn x^2-4x+1=x
c)căn x^2-2x+5=x+3
d)căn x^2-10x+25 -2x=3
e)căn x^2-4x+3=x-2
f)căn x^2-6x+9=2x-1
(toán 9) Mọi người ơi giải giúp mình với
a: \(\sqrt{x^2-4x+4}=3x+1\)
=>\(\sqrt{\left(x-2\right)^2}=3x+1\)
=>|x-2|=3x+1
=>\(\begin{cases}3x+1\ge0\\ \left(3x+1\right)^2=\left(x-2\right)^2\end{cases}\Rightarrow\begin{cases}x\ge-\frac13\\ \left(3x+1-x+2\right)\left(3x+1+x-2\right)=0\end{cases}\)
=>\(\begin{cases}x\ge-\frac13\\ \left(2x+3\right)\left(4x-1\right)=0\end{cases}\Rightarrow\begin{cases}x\ge-\frac13\\ x\in\left\lbrace-\frac32;\frac14\right\rbrace\end{cases}\)
=>\(x=\frac14\)
b:
ĐKXĐ: \(x^2-4x+1\ge0\)
=>\(x^2-4x+4-3\ge0\)
=>\(\left(x-2\right)^2\ge3\)
=>\(\left[\begin{array}{l}x-2\ge\sqrt3\\ x-2\le-\sqrt3\end{array}\right.\Rightarrow\left[\begin{array}{l}x\ge2+\sqrt3\\ x\le2-\sqrt3\end{array}\right.\)
\(\sqrt{x^2-4x+1}=x\)
=>\(\begin{cases}x\ge0\\ x^2-4x+1=x^2\end{cases}\Rightarrow\begin{cases}x\ge0\\ -4x+1=0\end{cases}\Rightarrow x=\frac14\)
c: \(\sqrt{x^2-2x+5}=x+3\)
=>\(\begin{cases}x+3\ge0\\ x^2-2x+5=\left(x+3\right)^2\end{cases}\Rightarrow\begin{cases}x\ge-3\\ x^2+6x+9=x^2-2x+5\end{cases}\)
=>\(\begin{cases}x\ge-3\\ x^2+6x+9-x^2+2x-5=0\end{cases}\Rightarrow\begin{cases}x\ge-3\\ 8x+4=0\end{cases}\Rightarrow x=-\frac12\)
d: \(\sqrt{x^2-10x+25}-2x=3\)
=>\(\sqrt{\left(x-5\right)^2}=2x+3\)
=>|x-5|=2x+3
=>\(\begin{cases}2x+3\ge0\\ \left(2x+3\right)^2=\left(x-5\right)^2\end{cases}\Rightarrow\begin{cases}x\ge-\frac32\\ \left(2x+3-x+5\right)\left(2x+3+x-5\right)=0\end{cases}\)
=>\(\begin{cases}x\ge-\frac32\\ \left(x+8\right)\left(3x-2\right)=0\end{cases}\Rightarrow x=\frac23\)
e:
ĐKXĐ: \(\left[\begin{array}{l}x\ge3\\ x\le1\end{array}\right.\)
\(\sqrt{x^2-4x+3}=x-2\)
=>\(\begin{cases}x-2\ge0\\ x^2-4x+3=\left(x-2\right)^2\end{cases}\Rightarrow\begin{cases}x\ge2\\ x^2-4x+3=x^2-4x+4\end{cases}\)
=>x∈∅
f: \(\sqrt{x^2-6x+9}=2x-1\)
=>\(\sqrt{\left(x-3\right)^2}=2x-1\)
=>|x-3|=2x-1
=>\(\begin{cases}2x-1\ge0\\ \left(2x-1\right)^2=\left(x-3\right)^2\end{cases}\Rightarrow\begin{cases}x\ge\frac12\\ \left(2x-1-x+3\right)\left(2x-1+x-3\right)=0\end{cases}\)
=>\(\begin{cases}x\ge\frac12\\ \left(x+2\right)\left(3x-4\right)=0\end{cases}\Rightarrow x=\frac43\)
giải pt sau : căn 9x+9 + căn 4x+4 -2 căn 16x+16 = căn x+1-8
Ta có: \(\sqrt{9x+9}+\sqrt{4x+4}-2\sqrt{16x+16}=\sqrt{x+1}-8\)
\(\Leftrightarrow3\sqrt{x+1}+2\sqrt{x+1}-8\sqrt{x+1}-\sqrt{x+1}=-8\)
\(\Leftrightarrow\sqrt{x+1}=2\)
\(\Leftrightarrow x+1=4\)
hay x=3