Cho biểu thức \(A=x^2+xy+y^2+1\) . Với mọi x ; y thỏa mãn \(x.y\ne0\) thì A _______ 1
Chứng minh rằng:
a) Biểu thức A=x^2+x+1 luôn luôn dương với mọi x
b) Biểu thức B= x^2-xy+y^2 luôn luôn dương với mọi x,y không đồng thời bằng 0
c) Biểu thức C= 4x-10-x^2 luôn luôn âm với mọi x
a) \(x^2+x+1=x^2+x+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x\)
c) \(C=4x-10-x^2=-\left(x^2-4x+10\right)\)
\(=-\left(x^2-4x+4+6\right)=-\left[\left(x-2\right)^2+6\right]\)
\(=-\left(x^2-4x+4+6\right)=-\left[\left(x-2\right)^2\right]-6\le-6< 0\forall x\)
cho biểu thức A=x^2/(y^2+xy) - y^2/(x^2-xy) - (x^2y^2)/xy
a.rút gọn a
b.cmr a không nhận giá trị nguyên với mọi giá trị nguyen của x,y thỏa mãn xy khác o và khác y,-y
Bạn phải ghi dấu ngoặc để mọi người hiểu chứ?
bài 1:tính GTNN của các biểu thức sau:
a,A=x^2-4x+6
b,B=y^2-y+1
c,C=x^2-4x+y^2-y+5
bài 2: tính GTLN của các biểu thức sau
a,A=-x^2+4x+2
b,B=x-x^2+2
bài 3:chứng tỏ
a,x^2-6x+10>0 với mọi x
b,4y-y^2-5 với mọi y
bài 4:cho biết x+y=15 và xy=-100. Tính giá trị của biểu thức B=x^2+y^2
bài 5:chứng minh đẳng thức (x+y)^2-(x-y)^2=4xy
Bài 1 :
a, \(A=x^2-4x+6=x^2-4x+4+2=\left(x-2\right)^2+2\ge2\)
Dấu ''='' xảy ra khi x = 2
Vậy GTNN A là 2 khi x = 2
b, \(B=y^2-y+1=y^2-2.\frac{1}{2}y+\frac{1}{4}+\frac{3}{4}=\left(y-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Dấu ''='' xảy ra khi y = 1/2
Vậy GTNN B là 3/4 khi y = 1/2
c, \(C=x^2-4x+y^2-y+5=x^2-4x+4+y^2-y+\frac{1}{4}+\frac{3}{4}\)
\(=\left(x-2\right)^2+\left(y-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Dấu ''='' xảy ra khi \(x=2;y=\frac{1}{2}\)
Vậy GTNN C là 3/4 khi x = 2 ; y = 1/2
Bài 3 :
a, \(x^2-6x+10=x^2-2.3.x+9+1=\left(x-3\right)^2+1\ge1>0\)( đpcm )
b, \(-y^2+4y-5=-\left(y^2-4y+5\right)=-\left(y^2-4y+4+1\right)=-\left(y-2\right)^2-1< 0\)( đpcm )
Bài 4 :
\(B=\left(x^2+y^2\right)=\left(x+y\right)^2-2xy\)
Thay (*) ta được : \(225-2\left(-100\right)=225+200=425\)
Bài 5 :
\(\left(x+y\right)^2-\left(x-y\right)^2=\left(x+y-x+y\right)\left(x+y+x-y\right)\)
\(=2y.2x=4xy=VP\)( đpcm )
Trả lời:
Bài 1:
a, \(A=x^2-4x+6=x^2-2.x.2+4+2=\left(x-2\right)^2+2\)\(\ge2\forall x\)
Dấu "=" xảy ra khi x - 2 = 0 <=> x = 2
Vậy GTNN của A = 2 khi x = 2
b, \(B=y^2-y+1=\left(y^2-2.y.\frac{1}{2}+\frac{1}{4}\right)+\frac{3}{4}=\left(y-\frac{1}{2}\right)^2+\frac{3}{4}\)\(\ge\frac{3}{4}\forall y\)
Dấu "=" xảy ra khi \(y-\frac{1}{2}=0\Leftrightarrow y=\frac{1}{2}\)
Vậy GTNN của B = 3/4 khi x = 1/2
c, \(C=x^2-4x+y^2-y+5=\left(x^2-4x\right)+\left(y^2-y\right)+4+\frac{1}{4}+\frac{3}{4}\)
\(=\left(x^2-4x+4\right)+\left(y^2-y+\frac{1}{4}\right)+\frac{3}{4}=\left(x-2\right)^2+\left(y-\frac{1}{2}\right)^2+\frac{3}{4}\)\(\ge\frac{3}{4}\forall x;y\)
Dấu "=" xảy ra khi x - 2 = 0 <=> x = 2 và y - 1/2 = 0 <=> y = 1/2
Vậy GTNN của C = 3/4 khi x = 2; y = 1/2
Bài 2:
a, \(A=-x^2+4x+2=-\left(x^2-4x-2\right)=-\left(x^2-2.x.2+4-6\right)=-\left[\left(x-2\right)^2-6\right]\)
\(=-\left(x-2\right)^2+6\le6\forall x\)
Dấu "=" xảy ra khi x - 2 = 0 <=> x = 2
Vậy GTLN của A = 6 khi x = 2
b, \(B=x-x^2+2=-\left(x^2-x-2\right)=-\left(x^2-2.x.\frac{1}{2}+\frac{1}{4}-\frac{9}{4}\right)=-\left[\left(x-\frac{1}{2}\right)^2+\frac{9}{4}\right]\)
\(=-\left(x-\frac{1}{2}\right)^2-\frac{9}{4}\le-\frac{9}{4}\forall x\)
Dấu "=" xảy ra khi x - 1/2 = 0 <=> x = 1/2
Vậy GTLN của B = - 9/4 khi x = 1/2
Chứng minh rằng:
a) Biểu thức A=x^2+x+1 luôn luôn dương với mọi x
b) Biểu thức B= x^2-xy+y^2 luôn luôn dương với mọi x,y không đồng thời bằng 0
c) Biểu thức C= 4x-10-x^2 luôn luôn âm với mọi x
M.n giúp mk bài này nha
\(A=x^2+x+1=x^2+2.\dfrac{1}{2}x+\dfrac{1}{4}+\dfrac{3}{4}=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
vì \(\left(x+\dfrac{1}{2}\right)^2\ge0\forall x\Rightarrow\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
vậy A luôn luôn dương với mọi x
b: \(B=x^2-xy+y^2\)
\(=x^2-2\cdot x\cdot\dfrac{1}{2}y+\dfrac{1}{4}y^2+\dfrac{3}{4}y^2\)
\(=\left(x-\dfrac{1}{2}y\right)^2+\dfrac{3}{4}y^2>0\forall x,y\ne0\)
c: \(C=-x^2+4x-10\)
\(=-\left(x^2-4x+10\right)\)
\(=-\left(x^2-4x+4+6\right)\)
\(=-\left(x-2\right)^2-6< 0\)
Chứng minh biểu thức sau luôn > 0 với mọi x:
a) x^4 + x^2 + 2.
b) x^2 + xy + y^2 + 1
\(x^4+x^2+1=\left(x^4+2.x^2+\dfrac{1}{2}+\dfrac{1}{4}\right)+\dfrac{3}{4}=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)
\(x^2+xy+y^2+1=\left(x^2+2.x.\dfrac{y}{2}+\dfrac{y^2}{4}\right)+\dfrac{3y^2}{4}+1=\left(x+\dfrac{y}{2}\right)^2+\dfrac{3y^2}{4}+1>0\)
Cho biểu thức: P = 2/x - (x^2/x^2+xy + y^2-x^2/xy - y^2/xy+y^2).x+y/x^2+xy+y^2 với x khác 0, y khác 0, x khác -y
1) Rút gọn biểu thức P.
2) Tính giá trị của biểu thức P, biết x, y thỏa mãn đẳng thức:
x^2+y^2+10=2(x-3y)
Cho biểu thức A= xy.(x - 2).(y + 6)+12x2-24x+3y2+18y+36
- Phân tích đa thức thành nhân tử.
- Chứng minh A > 0 với mọi x ; y.
1/ Tính giá trị nhỏ nhất (hoặc lớn nhất) của các biểu thức sau:
a, C= 3x^2 - 4x/ 1 + x^2 với mọi x.
b, D= x^2 + y^2 - x + 6y + 10 với mọi x, y.
2/ Tìm các số x và y, biết: x^3 + y^3 = 152; x^2 - xy = 19 và x - y = 2
3/ Cho x + y = 2; x^2 + y^2 = 20. Tính x^3 + y^3
4/ Cho a^2 + b^2 = 1. Chứng minh rằng: a^6 + 3.a^2.b^2 + b^6 = 1
Bài 1)chứng tỏ biểu thức sau luôn dương với mọi x khác +1 và -1
A ={{(1-x^3)/(1-x)]+x}{[(1+x^3)/(1+x)]-x}}
Bài 2)phân tích đa thức thành nhân tử
a)4a^2b^2-(a^2+b^2-c^2)
b)x^5+x+1
c)a(x^2+1)-x(a^2+1)
d)x-1+x^(n+3)-x^n
bài 3)
a)thực hiện phép tính:(x/(y^2 - xy))((x^2 – y^2)/(x^2y+xy^2))
b)rút gọn biểu thức (|x|+|y|)/(x+y)
cầu xin tất cả mọi người chung tay giải hộ mình mỗi người mấy bài, mình hứa sẽ like cho tất cả ai giải , mình đang cần rất gấp