cho 2 số thực x,y thỏa mãn : x^2+y^2=1
Tìm GTLN của (x+y)^2
Cho 2 số thực x,y thỏa mãn điều kiện x^2+y^2=1.Tìm GTNN và GTLN của x+y
\(\Rightarrow x^2+y^2\ge2\sqrt{x^2y^2}=2xy\)
\(\Rightarrow1\ge2xy\)
\(\Rightarrow\frac{1}{2}\ge xy\)
Có \(x+y\ge2\sqrt{xy}\ge2\sqrt{\frac{1}{2}}=\frac{2}{\sqrt{2}}=\sqrt{2}\)
Vậy \(Min_{x+y}=\sqrt{2}\)
Làm tương tự với max
Thêm đk: x,y>0
Tìm max:
Áp dụng BĐT bunhiacopxki ta có:
\(\left(1+1\right)\left(x^2+y^2\right)\ge\left(x+y\right)^2\)
\(\Leftrightarrow2\ge\left(x+y\right)^2\)
\(\Leftrightarrow\sqrt{2}\ge x+y\)
Dấu " = " xảy ra <=> x=y
KL:...............................
Tìm Max nhá:
\(x^2+y^2=1\Leftrightarrow\left(x+y\right)^2-2xy=1\)
Suy ra \(\left(x+y\right)^2=1+2xy\)
Lại có: \(1=x^2+y^2\ge2xy\)
Suy ra \(\left(x+y\right)^2=1+2xy\le1+1=2\Leftrightarrow x+y\le\sqrt{2}\)
Dấu "=" xảy ra khi \(x=y=\sqrt{\frac{1}{2}}\)
Ê đạt: cái của bạn làm là tìm max chứ đâu phải min?
Cho 2 số thực x,y thỏa mãn x^2+y^2=1. tìm GTLN và GTNN của biểu thức A=x+y
bài 1: cho x;y là 2 số thực thỏa mãn x^3+ y^3=2
cmr: 0<x+y<=2
bài 2: cho x,y,z >=0 thỏa mãn x+y+z=1
Tìm GTLN của P=22xy +4yz+ 2015zx
Cho 2 số thực x, y thỏa mãn: x^2.+4y^2=20. Tìm GTLN của biểu thức: A=|x+y|
Áp dụng Bđt Bunhiacopxki vào 2 số \(x^2+4y^2\) và \(1+\dfrac{1}{4}\) có:
\(\left(x^2+4y^2\right)\left(1+\dfrac{1}{4}\right)\ge\left(x+y\right)^2=A^2\Rightarrow A^2\le25\Rightarrow A\le5\)
Dấu = xảy ra \(\Leftrightarrow\dfrac{x^2}{1}=\dfrac{4y^2}{\dfrac{1}{4}}\Leftrightarrow x^2=16y^2\Rightarrow x=4,y=1\)
Cho các số thực x, y, z thỏa mãn \(x^2+y^2+z^2=2\). Tìm GTLN của biểu thức \(P=x+y+z-xyz\)
\(2=x^2+y^2+z^2\ge y^2+z^2\ge2yz\Rightarrow yz\le1\)
\(P=x\left(1-yz\right)+y+z\Rightarrow P^2\le\left[x^2+\left(y+z\right)^2\right]\left[\left(1-yz\right)^2+1\right]\)
\(P^2\le\left(2+2yz\right)\left(y^2z^2-2yz+2\right)\)
\(P^2\le2\left(yz\right)^3-2\left(yz\right)^2+4=2y^2z^2\left(yz-1\right)+4\le4\)
\(\Rightarrow P\le2\)
\(P_{max}=2\) khi \(\left(x;y;z\right)=\left(0;1;1\right)\) và các hoán vị
Cho 2 số thực x, y thỏa mãn \(x^2+y^2+xy=3\). Tìm GTLN và GTNN của \(S=x^4+xy+y^4\)
Cho 2 số thực x, y thỏa mãn: \(x^2+4y^2=20\). Tìm GTLN của biểu thức: A=\(\left|x+y\right|\)
\(A=\sqrt{\left(1.x+\dfrac{1}{2}.2y\right)^2}\le\sqrt{\left(1+\dfrac{1}{4}\right)\left(x^2+4y^2\right)}=5\)
\(A_{max}=5\) khi \(\left(x;y\right)=\left(4;1\right);\left(-4;-1\right)\)
cho số thực x,y thỏa mãn x+y+4=0.Tìm GTLN của biểu thức A=2(x^3+y^3)+3(x^2+y^2)+10xy
cho x,y là hai số thực dương thỏa mãn đẳng thức x+y=2.Tìm GTLN của biểu thức M=x^2y^2(x^2+y^2)