Cho \(\dfrac{x+5}{100}+\dfrac{x+5}{99}=\dfrac{x+5}{98}+\dfrac{x+5}{97}\).Tìm x
Giải phương trình
\(a,\dfrac{x-3}{5}=6-\dfrac{1-2x}{3}\)
\(b,\dfrac{3x-2}{6}-5=\dfrac{3-2\left(x+7\right)}{4}\)
\(c,3\left(x-1\right)+3=5x\)
\(d,\dfrac{x+1}{100}+\dfrac{x+2}{99}=\dfrac{x+3}{98}+\dfrac{x+4}{97}\)
\(e,\dfrac{59-x}{41}+\dfrac{57-x}{43}+\dfrac{55-x}{45}+\dfrac{53-x}{47}=-4\)
\(f,\dfrac{x-90}{10}+\dfrac{x-76}{12}+\dfrac{x-58}{14}+\dfrac{x-36}{16}+\dfrac{x-15}{17}=15\)
Em mới học về pt nên chưa quen lắm mọi người giúp e với ạ !Nguyễn Việt Lâm Quản lý
a) Ta có: \(\dfrac{x-3}{5}=6-\dfrac{1-2x}{3}\)
\(\Leftrightarrow\dfrac{3\left(x-3\right)}{15}=\dfrac{90}{15}-\dfrac{5\left(1-2x\right)}{15}\)
\(\Leftrightarrow3x-9=90-5+10x\)
\(\Leftrightarrow3x-9=10x+85\)
\(\Leftrightarrow3x-10x=85+9\)
\(\Leftrightarrow-7x=94\)
hay \(x=-\dfrac{94}{7}\)
Vậy: \(S=\left\{-\dfrac{94}{7}\right\}\)
b) Ta có: \(\dfrac{3x-2}{6}-5=\dfrac{3-2\left(x+7\right)}{4}\)
\(\Leftrightarrow\dfrac{2\left(3x-2\right)}{12}-\dfrac{60}{12}=\dfrac{3\left(3-2x-14\right)}{12}\)
\(\Leftrightarrow6x-4-60=9-6x-42\)
\(\Leftrightarrow6x-64=-6x-33\)
\(\Leftrightarrow6x+6x=-33+64\)
\(\Leftrightarrow12x=31\)
hay \(x=\dfrac{31}{12}\)
Vậy: \(S=\left\{\dfrac{31}{12}\right\}\)
c) Ta có: \(3\left(x-1\right)+3=5x\)
\(\Leftrightarrow3x-3+3=5x\)
\(\Leftrightarrow3x-5x=0\)
\(\Leftrightarrow-2x=0\)
hay x=0
Vậy: S={0}
d) Ta có: \(\dfrac{x+1}{100}+\dfrac{x+2}{99}=\dfrac{x+3}{98}+\dfrac{x+4}{97}\)
\(\Leftrightarrow\dfrac{x+1}{100}+1+\dfrac{x+2}{99}+1=\dfrac{x+3}{98}+1+\dfrac{x+4}{97}+1\)
\(\Leftrightarrow\dfrac{x+101}{100}+\dfrac{x+101}{99}=\dfrac{x+101}{98}+\dfrac{x+101}{97}\)
\(\Leftrightarrow\dfrac{x+101}{100}+\dfrac{x+101}{99}-\dfrac{x+101}{98}-\dfrac{x+101}{97}=0\)
\(\Leftrightarrow\left(x+101\right)\left(\dfrac{1}{100}+\dfrac{1}{99}-\dfrac{1}{98}-\dfrac{1}{97}\right)=0\)
mà \(\dfrac{1}{100}+\dfrac{1}{99}-\dfrac{1}{98}-\dfrac{1}{97}\ne0\)
nên x+101=0
hay x=-101
Vậy: S={-101}
a) \(\dfrac{x-3}{5}=6-\dfrac{1-2x}{3}\\ \Leftrightarrow\dfrac{3\left(x-3\right)}{15}=\dfrac{90-5\left(1-2x\right)}{15}\\ \Leftrightarrow3x-9=90-5+10x\\ \Leftrightarrow3x-10x=90-5+9\\ \Leftrightarrow-7x=94\\ \Leftrightarrow x=\dfrac{-94}{7}\)
Vậy \(x=\dfrac{-94}{7}\) là nghiệm của pt
b) \(\dfrac{3x-2}{6}-5=\dfrac{3-2\left(x+7\right)}{4}\\ \Leftrightarrow\dfrac{2\left(3x-2\right)-60}{12}=\dfrac{9-6\left(x+7\right)}{12}\\ \Leftrightarrow6x-4-60=9-6x-42\\ \Leftrightarrow6x+6x=9-42+4+60\\ \Leftrightarrow12x=31\\ \Leftrightarrow x=\dfrac{31}{12}\)
Vậy \(x=\dfrac{31}{12}\) là nghiệm của pt
c) \(3\left(x-1\right)+3=5x\\ \Leftrightarrow3x+3+3=5x\\ \Leftrightarrow5x-3x=3+3\\ \Leftrightarrow2x=6\\ \Leftrightarrow x=3\)
Vậy x = 3 là nghiệm của pt
d) \(\dfrac{x+1}{100}+\dfrac{x+2}{99}=\dfrac{x+3}{98}+\dfrac{x+4}{97}\\ \Leftrightarrow\left(\dfrac{x+1}{100}+1\right)+\left(\dfrac{x+2}{99}+1\right)=\left(\dfrac{x+3}{98}+1\right)+\left(\dfrac{x+4}{97}+1\right)\\ \Leftrightarrow\dfrac{x+101}{100}+\dfrac{x+101}{99}-\dfrac{x+101}{98}-\dfrac{x+101}{97}=0\\ \Leftrightarrow\left(x+101\right)\left(\dfrac{1}{100}+\dfrac{1}{99}-\dfrac{1}{98}-\dfrac{1}{97}\right)=0\\ \Leftrightarrow x+101=0\\ \Leftrightarrow x=-101\)
Vậy x = -101 là nghiệm của pt
e) \(\dfrac{59-x}{41}+\dfrac{57-x}{43}+\dfrac{55-x}{45}+\dfrac{53-x}{47}=-4\\ \Leftrightarrow\left(\dfrac{59-x}{41}+1\right)+\left(\dfrac{57-x}{43}+1\right)+\left(\dfrac{53-x}{45}+1\right)+\left(\dfrac{53-x}{47}+1\right)=0\\ \Leftrightarrow\dfrac{100-x}{41}+\dfrac{100-x}{43}+\dfrac{100-x}{45}+\dfrac{100-x}{47}=0\\ \Leftrightarrow\left(100-x\right)\left(\dfrac{1}{41}+\dfrac{1}{43}+\dfrac{1}{45}+\dfrac{1}{47}\right)=0\\ \Leftrightarrow100-x=0\\ \Leftrightarrow x=100\)
Vậy x = 100 là nghiệm của pt
f) \(\dfrac{x-90}{10}+\dfrac{x-76}{12}+\dfrac{x-58}{14}+\dfrac{x-36}{16}+\dfrac{x-15}{17}=15\\ \Leftrightarrow\left(\dfrac{x-90}{10}-1\right)+\left(\dfrac{x-76}{12}-2\right)+\left(\dfrac{x-58}{14}-3\right)+\left(\dfrac{x-36}{16}-4\right)+\left(\dfrac{x-15}{17}-5\right)=0\\ \Leftrightarrow\dfrac{x-100}{10}+\dfrac{x-100}{12}+\dfrac{x-100}{14}+\dfrac{x-100}{16}+\dfrac{x-100}{17}=0\\ \Leftrightarrow\left(x-100\right)\left(\dfrac{1}{10}+\dfrac{1}{12}+\dfrac{1}{14}+\dfrac{1}{16}+\dfrac{1}{17}\right)=0\\ \Leftrightarrow x-100=0\\ \Leftrightarrow x=100\)
Vậy x = 100 là nghiệm của pt
e) Ta có: \(\dfrac{59-x}{41}+\dfrac{57-x}{43}+\dfrac{55-x}{45}+\dfrac{53-x}{47}=-4\)
\(\Leftrightarrow\dfrac{59-x}{41}+1+\dfrac{57-x}{43}+1+\dfrac{55-x}{45}+1+\dfrac{53-x}{47}+1=0\)
\(\Leftrightarrow\dfrac{100-x}{41}+\dfrac{100-x}{43}+\dfrac{100-x}{45}+\dfrac{100-x}{47}=0\)
\(\Leftrightarrow\left(100-x\right)\left(\dfrac{1}{41}+\dfrac{1}{43}+\dfrac{1}{45}+\dfrac{1}{47}\right)=0\)
mà \(\dfrac{1}{41}+\dfrac{1}{43}+\dfrac{1}{45}+\dfrac{1}{47}>0\)
nên 100-x=0
hay x=100
Vậy: S={100}
f) Ta có: \(\dfrac{x-90}{10}+\dfrac{x-76}{12}+\dfrac{x-58}{14}+\dfrac{x-36}{16}+\dfrac{x-15}{17}=15\)
\(\Leftrightarrow\dfrac{x-90}{10}-1+\dfrac{x-76}{12}-2+\dfrac{x-58}{14}-3+\dfrac{x-36}{16}-4+\dfrac{x-15}{17}-5=0\)
\(\Leftrightarrow\dfrac{x-100}{10}+\dfrac{x-100}{12}+\dfrac{x-100}{14}+\dfrac{x-100}{16}+\dfrac{x-100}{17}=0\)
\(\Leftrightarrow\left(x-100\right)\left(\dfrac{1}{10}+\dfrac{1}{12}+\dfrac{1}{14}+\dfrac{1}{16}+\dfrac{1}{17}\right)=0\)
mà \(\dfrac{1}{10}+\dfrac{1}{12}+\dfrac{1}{14}+\dfrac{1}{16}+\dfrac{1}{17}>0\)
nên x-100=0
hay x=100
Vậy: S={100}
bài 20 : tìm x
\(\dfrac{1}{1.2}\)+\(\dfrac{1}{2.3}\)+...+ \(\dfrac{1}{x.\left(x+1\right)}\)+\(\dfrac{1}{2018.2019}\)
bài 21: tìm x
\(\dfrac{x+1}{99}\)+\(\dfrac{x+2}{98}\)+\(\dfrac{x+3}{97}\)+\(\dfrac{x+4}{96}\)=-4
bài 22: so sánh
a) \(\dfrac{-1}{5}\)+\(\dfrac{4}{-5}\) và 1
b) \(\dfrac{3}{5}\) và \(\dfrac{2}{3}\)+\(\dfrac{-1}{5}\)
c) \(\dfrac{3}{2}\)+\(\dfrac{-4}{3}\) và \(\dfrac{1}{10}\)+\(\dfrac{-4}{5}\)
d)\(\dfrac{1}{2}\)+\(\dfrac{1}{3}\)+\(\dfrac{1}{4}\)+\(\dfrac{1}{5}\)+\(\dfrac{1}{6}\) và 2
Bài 21:
Ta có: \(\dfrac{x+1}{99}+\dfrac{x+2}{98}+\dfrac{x+3}{97}+\dfrac{x+4}{96}=-4\)
\(\Leftrightarrow\dfrac{x+1}{99}+1+\dfrac{x+2}{98}+1+\dfrac{x+3}{97}+1+\dfrac{x+4}{96}+1=0\)
\(\Leftrightarrow\dfrac{x+100}{99}+\dfrac{x+100}{98}+\dfrac{x+100}{97}+\dfrac{x+100}{96}=0\)
\(\Leftrightarrow\left(x+100\right)\left(\dfrac{1}{99}+\dfrac{1}{98}+\dfrac{1}{97}+\dfrac{1}{96}\right)=0\)
mà \(\dfrac{1}{99}+\dfrac{1}{98}+\dfrac{1}{97}+\dfrac{1}{96}>0\)
nên x+100=0
hay x=-100
Vậy: x=-100
a) Tìm x biết: \(\dfrac{x+1}{100}+\dfrac{x+2}{99}=\dfrac{x+3}{98}+\dfrac{x+4}{97}\)
b) So sánh \(\dfrac{3}{1^2.2^2}+\dfrac{5}{2^2.3^2}+\dfrac{7}{3^2.4^2}+...+\dfrac{19}{9^2.10^2}\) với 1
c) Tìm GTNN của: A= |x-10|+|x-5|
a/ \(\dfrac{x+1}{100}+\dfrac{x+2}{99}=\dfrac{x+3}{98}+\dfrac{x+4}{97}\)
\(\Leftrightarrow\left(\dfrac{x+1}{100}+1\right)+\left(\dfrac{x+2}{99}+1\right)=\left(\dfrac{x+3}{98}+1\right)+\left(\dfrac{x+4}{97}+1\right)\)
\(\Leftrightarrow\dfrac{x+101}{100}+\dfrac{x+101}{99}=\dfrac{x+101}{98}+\dfrac{x+101}{97}\)
\(\Leftrightarrow\dfrac{x+101}{100}+\dfrac{x+101}{99}-\dfrac{x+101}{98}-\dfrac{x+101}{97}=0\)
\(\Leftrightarrow\left(x+101\right)\left(\dfrac{1}{100}+\dfrac{1}{99}-\dfrac{1}{98}-\dfrac{1}{97}\right)=0\)
Mà \(\dfrac{1}{100}+\dfrac{1}{99}-\dfrac{1}{98}-\dfrac{1}{97}\ne0\)
\(\Leftrightarrow x+101=0\)
\(\Leftrightarrow x=-101\)
Vậy...
b/ Đặt :
\(A=\dfrac{3}{1^2.2^2}+\dfrac{5}{2^2.3^2}+.........+\dfrac{19}{9^2.10^2}\)
\(=\dfrac{2^2-1^2}{1^2.2^2}+\dfrac{3^2-2^2}{2^2.3^2}+....+\dfrac{10^2-9^2}{9^2.10^2}\)
\(=\dfrac{2^2}{1^2.2^2}-\dfrac{1^2}{1^2.2^2}+\dfrac{3^2}{2^2.3^2}-\dfrac{2^2}{2^2.3^2}+....+\dfrac{10^2}{9^2.10^2}-\dfrac{9^2}{9^2.10^2}\)
\(=1-\dfrac{1}{2^2}+\dfrac{1}{2^2}-\dfrac{1}{3^2}+...+\dfrac{1}{9^2}-\dfrac{1}{10^2}\)
\(=1-\dfrac{1}{10^2}< 1\)
\(\Leftrightarrow A< 1\left(đpcm\right)\)
Vậy...
c/ Với mọi x ta có :
\(\left|x-5\right|=\left|5-x\right|\)
\(\Leftrightarrow\left|x-10\right|+\left|x-5\right|=\left|x-10\right|+\left|5-x\right|\)
\(\Leftrightarrow A=\left|x-10\right|+\left|5-x\right|\)
\(\Leftrightarrow A\ge\left|x-10+5-x\right|\)
\(\Leftrightarrow A\ge5\)
Dấu "=" xảy ra
\(\Leftrightarrow\left(x-10\right)\left(5-x\right)\ge0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-10\ge0\\5-x\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}x-10\le0\\5-x\le0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge10\\5\ge x\end{matrix}\right.\\\left\{{}\begin{matrix}x\le10\\5\le x\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x\in\varnothing\\5\le x\le10\end{matrix}\right.\)
Vậy..
Giải phương trình:\(\dfrac{x+98}{2}\)+\(\dfrac{x+96}{4}\)+\(\dfrac{x+65}{35}\)=\(\dfrac{x+3}{97}\)+\(\dfrac{x+5}{95}\)+\(\dfrac{x+49}{51}\)
Pt\(\Leftrightarrow\dfrac{x+98}{2}+1+\dfrac{x+96}{4}+1+\dfrac{x+65}{35}+1=\dfrac{x+3}{97}+1+\dfrac{x+5}{95}+1+\dfrac{x+49}{51}+1\)
\(\Leftrightarrow\dfrac{x+100}{2}+\dfrac{x+100}{4}+\dfrac{x+100}{35}-\dfrac{x+100}{97}-\dfrac{x+100}{95}-\dfrac{x+100}{51}=0\)
\(\Leftrightarrow\left(x+100\right)\left(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{35}-\dfrac{1}{97}-\dfrac{1}{35}-\dfrac{1}{51}\right)=0\)
\(\Leftrightarrow x+100=0\Leftrightarrow x=-100\)
Vậy...
giải pt
\(\left(\dfrac{x-1}{99}+x-99\right)+\left(\dfrac{x-3}{97}+\dfrac{x-7}{93}\right)+\left(\dfrac{x-5}{95}+\dfrac{x-95}{5}\right)=6\)
\(\Leftrightarrow\left(\dfrac{x-1}{99}-1\right)+\left(\dfrac{x-99}{1}-1\right)+\left(\dfrac{x-3}{97}-1\right)+\left(\dfrac{x-7}{93}-1\right)+\left(\dfrac{x-5}{95}-1\right)+\left(\dfrac{x-95}{5}-1\right)=0\)=>x-100=0
hay x=100
tìm x,y,z
-(x+99)=\(\dfrac{y-98}{2}\)=\(\dfrac{z+97}{-3}\)và x-y +z=99
b) \(\dfrac{x}{5}=\dfrac{y}{3}\)và \(x^2-y^2=1600\)
giúp mk vs
giải các phương Trình sau
a) \(\left(\dfrac{x+2}{98}+1\right)+\left(\dfrac{x+3}{97}+1\right)=\left(\dfrac{x+4}{96}+1\right)+\left(\dfrac{x+5}{95}+1\right)\)
b) \(\dfrac{x+1}{1998}+\dfrac{x+2}{1997}=\dfrac{x+3}{1996}+\dfrac{x+4}{1995}\)
c) \(\dfrac{201-x}{99}+\dfrac{203-x}{97}+\dfrac{205-x}{95}+3=0\)
a) \(\left(\dfrac{x+2}{98}+1\right)+\left(\dfrac{x+3}{97}+1\right)=\left(\dfrac{x+4}{96}+1\right)+\left(\dfrac{x+5}{95}+1\right)\)
\(\Rightarrow\dfrac{x+100}{98}+\dfrac{x+100}{97}=\dfrac{x+100}{96}+\dfrac{x+100}{95}\)
\(\Rightarrow\dfrac{x+100}{98}+\dfrac{x+100}{97}-\dfrac{x+100}{96}-\dfrac{x+100}{95}=0\)
\(\Rightarrow\left(x+100\right)\left(\dfrac{1}{98}+\dfrac{1}{97}-\dfrac{1}{96}-\dfrac{1}{95}\right)=0\)
Vì \(\dfrac{1}{98}+\dfrac{1}{97}-\dfrac{1}{96}-\dfrac{1}{95}\ne0\) nên \(x+100=0\Leftrightarrow x=-100\)
b) \(\dfrac{x+1}{1998}+\dfrac{x+2}{1997}=\dfrac{x+3}{1996}+\dfrac{x+4}{1995}\)
\(\Rightarrow\dfrac{x+1}{1998}+1+\dfrac{x+2}{1997}+1=\dfrac{x+3}{1996}+1+\dfrac{x+4}{1995}+1\)
\(\Rightarrow\dfrac{x+1999}{1998}+\dfrac{x+1999}{1997}=\dfrac{x+1999}{1996}+\dfrac{x+1999}{1995}\)
\(\Rightarrow\dfrac{x+1999}{1998}+\dfrac{x+1999}{1997}-\dfrac{x+1999}{1996}-\dfrac{x+1999}{1995}=0\)
\(\Rightarrow\left(x+1999\right)\left(\dfrac{1}{1998}+\dfrac{1}{1997}-\dfrac{1}{1996}-\dfrac{1}{1995}\right)=0\)
Vì \(\dfrac{1}{1998}+\dfrac{1}{1997}-\dfrac{1}{1996}-\dfrac{1}{1995}\ne0\) nên \(x+1999=0\Leftrightarrow x=-1999\)
c) \(\dfrac{201-x}{99}+\dfrac{203-x}{97}+\dfrac{205-x}{95}+3=0\)
\(\Rightarrow\dfrac{201-x}{99}+1+\dfrac{203-x}{97}+1+\dfrac{205-x}{95}+1=0\)
\(\Rightarrow\dfrac{300-x}{99}+\dfrac{300-x}{97}+\dfrac{300-x}{95}=0\)
\(\Rightarrow\left(300-x\right)\left(\dfrac{1}{99}+\dfrac{1}{97}+\dfrac{1}{95}\right)=0\)
Vì \(\dfrac{1}{99}+\dfrac{1}{97}+\dfrac{1}{95}\ne0\) nên \(300-x=0\Leftrightarrow x=300\)
(1 + \(\dfrac{2}{5}\)) x (1 + \(\dfrac{2}{7}\)) x (1 + \(\dfrac{2}{9}\)) x (1 + \(\dfrac{2}{11}\)) x.......x (1 + \(\dfrac{2}{97}\)) x (1 + \(\dfrac{2}{99}\))
( 1 + \(\dfrac{2}{5}\)).( 1 + \(\dfrac{2}{7}\) ).( 1 + \(\dfrac{2}{9}\)).( 1 + \(\dfrac{2}{11}\)).....( 1 + \(\dfrac{2}{97}\)).( 1 + \(\dfrac{2}{99}\))
= \(\dfrac{7}{5}\).\(\dfrac{9}{7}\).\(\dfrac{11}{9}\).\(\dfrac{13}{11}\)...\(\dfrac{99}{97}\).\(\dfrac{101}{99}\)
= \(\dfrac{7.9.11.13...99.101}{5.7.9.11...97.99}\)
= \(\dfrac{101}{5}\)
❤ HOK TT ❤
Bài 5:
a) \(\dfrac{x+1}{99}+\dfrac{x+4}{96}+\dfrac{x+8}{92}+\dfrac{x+3}{97}+4=0\)
b) \(\dfrac{x-11}{111}+\dfrac{x-12}{112}=\dfrac{x-23}{123}+\dfrac{x-24}{124}\)
\(\Leftrightarrow\left(\dfrac{x-11}{111}+1\right)+\left(\dfrac{x-12}{112}+1\right)=\left(\dfrac{x-23}{123}+1\right)+\left(\dfrac{x-24}{124}+1\right)\)
=>x+100=0
=>x=-100
a: =>\(\left(\dfrac{x+1}{99}+1\right)+\left(\dfrac{x+4}{96}+1\right)+\left(\dfrac{x+8}{92}+1\right)+\left(\dfrac{x+3}{97}+1\right)=0\)
=>x+100=0
=>x=-100
b: =>(x-11/111+1)+(x-12/112+1)=(x-23/123+1)+(x-24/124+1)
=>x+100=0
=>x=-100