Giá trị nhỏ nhất của biểu thức \(I2009^{2007}\cdot x+2010I\)
Giá trị nhỏ nhất của biểu thức I20092007x+2010I là....
Tìm giá trị nhỏ nhất của biểu thức sau:
A= I x-2010I+Ix-2011I
Áp dụng Bđt \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:
\(\left|x-2010\right|+\left|x-2011\right|\ge\left|x-2010+2011-x\right|=1\)
\(\Rightarrow A\ge1\)
Dấu = khi \(\left(x-2010\right)\left(x-2011\right)\ge0\)\(\Leftrightarrow2010\le x\le2011\)
\(\Rightarrow\begin{cases}\left(x-2010\right)\left(x-2011\right)\\2010\le x\le2011\end{cases}\)\(\Rightarrow\begin{cases}x=2010\\x=2011\end{cases}\)
Vậy MinA=1 khi x=2010 hoặc x=2011
Giá trị nhỏ nhất của : I 20092007x+2010I và x4+3x2-4
Giá trị lớn nhất của : I6-2xI-2I4+xI
Tìm giá trị nhỏ nhất của biểu thức A=Ix-2010I+Ix-2012I+Ix-2014I
Vì |x-2010| ≧ 0 với mọi x
|x-2012| ≧ 0 với mọi x
|x-2014| ≧ 0 với mọix
Suy ra : |x-2010|+|x-2012|+|x-2014| ≧ 0
hay A ≧ 0
Dấu =xảy ra <=> \(\hept{\begin{cases}\left|x-2010\right|=0\\\left|x-2012\right|=0\\\left|x-2014\right|=0\end{cases}}\)<=>\(\hept{\begin{cases}x-2010=0\\x-2012=0\\x-2014=0\end{cases}}\)<=>\(\hept{\begin{cases}x=2010\\x=2012\\x=2014\end{cases}}\)
Vậy GTNN(A) = 0 <=> x ∈ { 2010;2012;2014}
Từ đầu đến A>= 0 là đúng nhưng dưới là sai nhé bạn!
Xét biểu thức A = \(\frac{1}{15}\cdot\frac{225}{x+2}+\frac{3}{14}\cdot\frac{196}{3\cdot x+6}\)
a) Rút gọn biểu thức A.
b) Tìm các giá trị của x để A có giá trị là số nguyên.
c) Trong các giá trị của A. Tìm giá trị lớn nhất và giá trị nhỏ nhất.
Làm khâu rút gọn thôi
\(=\frac{15}{x+2}+\frac{42}{3x+6}\)
\(=\frac{15}{x+2}+\frac{42}{3\left(x+2\right)}\)
\(=\frac{3.15+42}{3\left(x+2\right)}\)
\(=\frac{87}{3\left(x+2\right)}\)
\(=\frac{29}{x+2}\)
Câu b có phải để tử chia hết cho mẫu không nhỉ? Không chắc thôi để ngkh làm
a, A=15/x+2 +42/3x+6
=45/3x+6 + 42/3x+6
=87/3x+6 = 29x+2
b,để A có giá trị là số nguyên thì 29 phải chia hết cho x+2 hay x+2 thuộc tập hợp ước của 29 mà Ư(29)={29;-29;1;-1} .
Xét từng trường hợp .C, lấy trường hợp lớn nhất và bé nhất
Giá trị nhỏ nhất của biểu thức giÁ trị tuyệt đối 2009^2007 nhân X +2010 là ?
Tìm giá trị nhỏ nhất của biểu thức.
A = x ^2 - 2x + 2007 / 2007 x ^2 , ( x khác 0 )
\(A=\frac{x^2-2x+2007}{2007x^2},\left(x\ne0\right)\)
\(A=\frac{2007x^2-2x.2007+2007^2}{2007x^2}=\frac{x^2-2x.2007+2007^2}{2007x^2}+\frac{2006x^2}{2007x^2}=\) \(\frac{\left(x-2007\right)^2}{2007x^2}+\frac{2006}{2007}\ge\frac{2006}{2007}\)
\(A_{min}=\frac{2006}{2007}\) khi \(x-2007=0\) hay \(x=2007\)
Chúc bạn học tốt !!!
x2−2x+20072007x2" role="presentation" style="border:0px; box-sizing:border-box; direction:ltr; display:inline; float:none; line-height:normal; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:0px; position:relative; white-space:nowrap; word-spacing:normal; word-wrap:normal" class="MathJax">x2−2x+20072007x2
12007" role="presentation" style="border:0px; box-sizing:border-box; direction:ltr; display:inline; float:none; line-height:normal; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:0px; position:relative; white-space:nowrap; word-spacing:normal; word-wrap:normal" class="MathJax">12007 - 22007x" role="presentation" style="border:0px; box-sizing:border-box; direction:ltr; display:inline; float:none; line-height:normal; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:0px; position:relative; white-space:nowrap; word-spacing:normal; word-wrap:normal" class="MathJax">22007x + 1x2" role="presentation" style="border:0px; box-sizing:border-box; direction:ltr; display:inline; float:none; line-height:normal; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:0px; position:relative; white-space:nowrap; word-spacing:normal; word-wrap:normal" class="MathJax">1x2
1x2" role="presentation" style="border:0px; box-sizing:border-box; direction:ltr; display:inline; float:none; line-height:normal; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:0px; position:relative; white-space:nowrap; word-spacing:normal; word-wrap:normal" class="MathJax">1x2 - 22007x" role="presentation" style="border:0px; box-sizing:border-box; direction:ltr; display:inline; float:none; line-height:normal; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:0px; position:relative; white-space:nowrap; word-spacing:normal; word-wrap:normal" class="MathJax">22007x + 120072" role="presentation" style="border:0px; box-sizing:border-box; direction:ltr; display:inline; float:none; line-height:normal; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:0px; position:relative; white-space:nowrap; word-spacing:normal; word-wrap:normal" class="MathJax">120072 ) + (12007−120072" role="presentation" style="border:0px; box-sizing:border-box; direction:ltr; display:inline; float:none; line-height:normal; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:0px; position:relative; white-space:nowrap; word-spacing:normal; word-wrap:normal" class="MathJax">12007−120072 )
1x−12007" role="presentation" style="border:0px; box-sizing:border-box; direction:ltr; display:inline; float:none; line-height:normal; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:0px; position:relative; white-space:nowrap; word-spacing:normal; word-wrap:normal" class="MathJax">1x−12007)12007−120072" role="presentation" style="border:0px; box-sizing:border-box; direction:ltr; display:inline; float:none; line-height:normal; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:0px; position:relative; white-space:nowrap; word-spacing:normal; word-wrap:normal" class="MathJax">12007−120072)
1x−12007" role="presentation" style="border:0px; box-sizing:border-box; direction:ltr; display:inline; float:none; line-height:normal; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:0px; position:relative; white-space:nowrap; word-spacing:normal; word-wrap:normal" class="MathJax">1x−12007 = 0
<=> x = 2007
Vậy x = 2007 thì Amin
bài này từng có trên violimpic đấy bạn
Giá trị nhỏ nhất của biểu thức giá trị tuyệt đối của 20092007x+2010 là bao nhiu
Tìm GTNN của \(\left|2009^{2007}x\right|+2010\)
Ta có: \(\left|2009^{2007}x\right|\ge0\)
Hiển nhiên \(\left|2009^{2007}x\right|+2010\ge2010\)
Vậy GTNN của \(\left|2009^{2007}x\right|+2010\) là 10
Khi và chỉ khi \(2009^{2007}x=0\Rightarrow x=0\)
Bạn sửa lại dòng thứ 4 GNN là 10 thành 2010
giá trị nhỏ nhất của biểu thức |20092007x+2010| bằng ?