cho \(\frac{x^9-1}{x^9+1}=7\) . vậy giá tri biểu thức A= \(\frac{x^{18}-1}{x^{18}+1}\) là A=...
Cho \(\frac{x^9-1}{x^9+1}=7\). Vậy giá trị biểu thức A=\(\frac{x^{18}-1}{x^{18}+1}\)là A=....................
x^9=a=> \(\frac{a-1}{a+1}=7\Rightarrow a-->\frac{a^2-1}{a^2+1}=A\)
Cho \(\frac{^{x^9}-1}{x^9+1}=7\).Vậy Giá trị biểu thức A=\(\frac{x^{18}-1}{x^{18}+1}\)= ?
bạn có thể cho mình cách giải cụ thể được không?
Cho \(\frac{x^9-1}{x^9+1}\)= 7. Vậy giá trị biểu thức \(\frac{x^{18}-1}{x^{18}+1}\) là
(Nhập kết quả dưới dạng số thập phân gọn nhất)
\(\frac{x^9-1}{x^9+1}=7\)=>x9-1=7x9+1
=>x9=\(\frac{-8}{6}\)
=>(x9)2=(\(\frac{-8}{6}\))2
=>x18=\(\frac{16}{9}\)=>..................................
1) Cho \(\frac{xy}{x^2+y^2}=\frac{3}{8}\).Tính \(A=\frac{x^2+2xy+y^2}{x^2-2xy+y^2}\)
2) Cho \(\frac{x^9-1}{x^9+1}=7\).Tính giá trị của biểu thức:\(A=\frac{x^{18}-1}{x^{18}+1}\)
1) \(\frac{xy}{x^2+y^2}=\frac{3}{8}\Leftrightarrow3x^2+3y^2-8xy=0\)
Nhận thấy điều kiện của phương trình là x,y cùng khác 0
Chia cả hai vê của phương trình trên cho \(y^2\ne0\)được :
\(3\left(\frac{x}{y}\right)^2-8\left(\frac{x}{y}\right)+3=0\). Đặt \(a=\frac{x}{y}\), phương trình trở thành : \(3a^2-8a+3=0\Leftrightarrow\orbr{\begin{cases}x=\frac{4+\sqrt{7}}{3}\\x=\frac{4-\sqrt{7}}{3}\end{cases}}\)
Từ đó rút ra được tỉ lệ của \(\frac{x}{y}\). Bạn thay vào tính A là được :)
2) \(\frac{x^9-1}{x^9+1}=7\Leftrightarrow\frac{x^9-1}{x^9+1}-1=6\Leftrightarrow\frac{-2}{x^9+1}=6\Leftrightarrow x^9=\frac{-2}{6}-1=-\frac{4}{3}\)
Ta có \(A=\frac{\left(x^9\right)^2-1}{\left(x^9\right)^2+1}\). Thay giá trị của x9 vừa tính ở trên vào là được :)
Câu 5:Cho . Vậy giá trị biểu thức là
(Nhập kết quả dưới dạng số thập phân gọn nhất)
\(\dfrac{x^9-1}{x^9+1}=7=\dfrac{7}{1}\Rightarrow\dfrac{x^9-1}{7}=\dfrac{x^9+1}{1}=\dfrac{-2}{6}=\dfrac{-1}{3}\)
\(\Rightarrow\dfrac{x^9-1}{7}=\dfrac{-1}{3}\Rightarrow x^9=1-\dfrac{7}{3}=\dfrac{-4}{3}\)
\(\Rightarrow x^{18}=\left(x^9\right)^2=\left(\dfrac{-4}{3}\right)^2=\dfrac{16}{9}\)
\(A=\dfrac{x^{18}-1}{x^{18}+1}=\dfrac{\dfrac{16}{9}-1}{\dfrac{16}{9}+1}=\dfrac{7}{25}\)
Cho biểu thức
\(P=\frac{3}{x+3}+\frac{1}{x-3}-\frac{18}{9-x^2}\)
a, Tìm ĐKXĐ của P
b,Rút gọn biểu thức P
c, Tìm giá trị của x để P=4
a, ĐKXĐ :\(x\ne3;x\ne-3\)
b, \(P=\frac{3\cdot\left(x-3\right)}{\left(x-3\right)\cdot\left(x+3\right)}+\frac{x+3}{\left(x+3\right)\cdot\left(x-3\right)}+\frac{18}{\left(x+3\right)\cdot\left(x-3\right)}\)
\(=\frac{3x-9+x+3+18}{\left(x+3\right)\cdot\left(x-3\right)}\)\(=\frac{4x+12}{\left(x-3\right)\cdot\left(x+3\right)}\)
\(=\frac{4\cdot\left(x+3\right)}{\left(x+3\right)\cdot\left(x-3\right)}=\frac{4}{x-3}\)
c, Với P = 4 \(\Rightarrow\frac{4}{x-3}=4\Rightarrow4=4\cdot\left(x-3\right)\)\(\Rightarrow1=x-3\Rightarrow x=4\)
Chứng minh rằng :
a) Giá trị của biểu thức : \(\left(\frac{x+2}{x}\right)^2:\left(\frac{x^2+4}{x^2}+\frac{4}{x+1}\left(\frac{1}{x}+1\right)\right)\)bằng 1 với mọi giá trị \(x\ne0;x\ne-2\)
b) Giá trị của biểu thức\(\left(\frac{x}{2x-6}-\frac{x^2}{x^2-9}+\frac{x}{2x-9}\left(\frac{3}{x}-\frac{1}{x-3}\right)\right):\frac{x^2-5x-6}{18-2x^2}\) bằng 1 với mọi giá trị \(x\ne0;x\ne+-3;x\ne-1;x\ne6\)
a)\(\frac{x^2+4}{x^2}+\frac{4}{x+1}\left(\frac{1}{x}+1\right)\)
\(=\frac{x^2+4}{x^2}+\frac{4}{x+1}.\frac{x+1}{x}\)
\(=\frac{x^2+4}{x^2}+\frac{4}{x}\)
\(=\frac{x^2+4x+4}{x^2}\)
\(\left(\frac{x+2}{x}\right)^2\)
=>phép chia = 1 với mọi x # 0 và x#-1
b)Cm tương tự
Ta thấy A gồm có 99 số hạng nên ta nhóm mỗi nhóm 3 số hạng.
Ta có: A = 1 + 5 + 52 + 53 + 54 + 55 +...+ 597 + 598 + 599
= (1 + 5 + 52 )+ (53 + 54 + 55 )+...+( 597 + 598 + 599 )
=(1 + 5 + 52 )+ 53(1 + 5 + 52 ) +...+ 597(1 + 5 + 52 )
= ( 1 + 5 + 52)(1 + 53+....+597)
= 31(1 + 53+....+597)
Vì có một thừa số là 31 nên A chia hết cho 31.
P/s Đừng để ý câu trả lời của mình
Cho x,y,z là 3 số thực khác 0 thoả mãn đồng thời :x+y+z= a và \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{a}\)
Tính giá trị biểu thức S= \(\left(x^5-a^5\right)\left(y^7-a^7\right)\left(x^9-a^9\right)\)
cho \(\frac{x^9-1}{x^9+1}=7\) tính \(\frac{x^{18}-1}{x^{18}+1}\)
Ta có: (x9-1)/(x9+1)=7
=> x9-1=7x9+1
=> 6x9=-2
=> x9=-1/3
=> x=\(\sqrt[9]{\frac{-1}{3}}\)
thay \(\sqrt[9]{\frac{-1}{3}}\) vào \(\frac{x^{18}-1}{x^{18}+1}\)ta được:
\(\frac{\left(\sqrt[9]{\frac{-1}{3}}\right)^{18}-1}{\left(\sqrt[9]{\frac{-1}{3}}\right)^{18}+1}\)=\(\frac{\frac{1}{9}-1}{\frac{1}{9}+1}\)=\(\frac{-4}{5}\)
Vậy \(\frac{x^{18}-1}{x^{18}+1}\)= \(\frac{-4}{5}\)