Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lyphuchai
Xem chi tiết
Nguyễn  Việt Dũng
24 tháng 10 2023 lúc 13:54

Tứ giác ABCD là một hình vuông.

Vangull
Xem chi tiết
Akai Haruma
24 tháng 5 2021 lúc 1:38

Lời giải:

a) 

$\widehat{ABD}=\widehat{DCA}=90^0$ (góc nt chắn nửa đường tròn)

$\Leftrightarrow \widehat{ABE}=\widehat{DCE}=90^0$

Tứ giác $ABEH$ có tổng 2 góc đối $\widehat{ABE}+\widehat{AHE}=90^0+90^0=180^0$ nên là tứ giác nội tiếp.

Tứ giác $DCEH$ có tổng 2 góc đối $\widehat{DCE}+\widehat{EHD}=90^0+90^0=180^0$ nên là tứ giác nội tiếp.

b) 

Từ 2 tứ giác nội tiếp phần a, kết hợp với $ABCD$ là tứ giác nội tiếp, ta có:

\(\widehat{HBE}=\widehat{EAH}=\widehat{CAD}=\widehat{CBD}=\widehat{CBE}\) nên $BE$ là tia phân giác $\widehat{HBC}$

\(\widehat{HCE}=\widehat{EDH}=\widehat{BDA}=\widehat{BCA}=\widehat{BCE}\) nên $CE$ là tia phân giác $\widehat{BCH}$

Do đó $E$ chính là tâm đường tròn nội tiếp tam giác $BCH$

c) Sử dụng tính chất trung tuyến ứng với cạnh huyền thì bằng nửa cạnh huyền. Suy ra $IH=IC=EI=ID$.

Ta có:

\(\widehat{IHD}=\widehat{IDH}=\widehat{ODB}=\widehat{OBD}=\widehat{OBI}\) nên $OBIH$ là tứ giác nội tiếp $(1)$

Mặt khác:

$\widehat{HIC}=\widehat{HIB}+\widehat{CIB}$

$=2\widehat{IDH}+2\widehat{CDI}$

$=2\widehat{HDC}=2\widehat{ADC}=2(90^0-\widehat{CAD})$

$=180^0-2\widehat{CBE}=180^0-\widehat{CBH}$

$\Rightarrow BHIC$ là tứ giác nội tiếp $(2)$

Từ $(1);(2)$ suy ra đpcm.

 

Akai Haruma
24 tháng 5 2021 lúc 1:38

Hình vẽ:

Phạmm Dungg
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 8 2021 lúc 20:20

Bài 1: 

a: Xét tứ giác ABCD có 

\(\widehat{A}+\widehat{C}=180^0\)

nên ABCD là tứ giác nội tiếp

hay A,B,C,D cùng thuộc 1 đường tròn

Ánh ngọc
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 3 2021 lúc 20:24

a) Xét (O) có 

ΔACD nội tiếp đường tròn(A,C,D\(\in\)(O))

AD là đường kính(gt)

Do đó: ΔACD vuông tại C(Định lí)

Suy ra: AC\(\perp\)CD tại C

hay \(EC\perp CD\) tại C

Xét tứ giác ECDF có 

\(\widehat{EFD}\) và \(\widehat{ECD}\) là hai góc đối

\(\widehat{EFD}+\widehat{ECD}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: ECDF là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

Lương Mạnh Hà
Xem chi tiết
Oanh Ma
Xem chi tiết
Hoài An
Xem chi tiết
Nguyễn Lê Phước Thịnh
9 tháng 5 2023 lúc 15:08

a: góc IED+góc ICD=180 độ

=>IEDC nội tiếp

b: góc ECI=góc BDA=1/2*sđ cung BA

=>góc ECI=góc BCI

=>CI là phân giác của góc BCE

Nguyễn Hoàng Ánh Tuyết
Xem chi tiết
nguyễn văn mạnh
Xem chi tiết
Cô Hoàng Huyền
17 tháng 5 2016 lúc 15:17

A D B C E H I O

Để chứng minh 5 điểm trên cùng thuộc một đường tròn, ta chứng minh góc BCH = góc BIH = góc BOH.

Thật vậy, theo chứng minh b, E là tâm đường tròn nội tiếp tam giác BCH nên CE là phân giác góc BCH. Từ đó góc BCH = 2 góc BCA.

Ta có góc BCA bằng góc BDA vì cùng chắn cung BA, nên góc BCH = 2 góc BDA (1)

Tam giác OBD cân tại O nên BOH = 2 góc BDA.(2)

Tam giác EHD vuông tại H , HI là trung tuyến ứng với cạnh huyền nên IH = ID, từ đó góc BIH = 2 góc BDA.(3)

Từ  (1), (2), (3) ta suy ra 3 góc trên bằng nhau hay 5 điểm B, C, I, O, H cùng thuộc một đường tròn.

Thuần Mỹ
Xem chi tiết
Nguyễn Lê Phước Thịnh
21 tháng 6 2023 lúc 10:18

1: góc ABO+góc ACO=180 độ

=>ABOC nội tiếp đường tròn đường kính OA

Tâm là trung điểm của OA

2: Xét ΔABE và ΔAFB có

góc ABE=góc AFB

góc BAE chung

=>ΔABE đồng dạng với ΔAFB

=>AB/AF=AE/AB

=>AB^2=AE*AF