Cho tứ giác ABCD, biết BC=AB và A^+C^=180o . Từ B kẻ BH ⊥ DC và BK ⊥ AD. Chứng minh DB là tia phân giác của góc D
có g KAB+ góc BAD = 180 độ
góc BAD + góc C = 180 độ
=> gKAB = gC
xét tam giác AKB vuông tại K và tam giác CaB vuông tại A có
AB=BC
gKAB = gC
=> 2 tam giác đó bằng nhau
=> kb=ab( 2 cạnh tg ứng)
xét tam giác Kbd vvuoong tại K và tam giác ABD vuông tại A có
BD chung
KB=AB
=> 2 tam giác đó bằng nhau
=> g KDB= g ADB
=> đpcm
1.Cho hình thang ABCD (AB song song với CD), M là trung điểm BC. Cho biết DM là phân giác của góc D. Chứng minh AM là phân giác của góc A.
2. Cho tứ giác ABCD có AD=AB=BC và góc A+góc C= 180 độ. Chứng minh rằng:
a)DB là phân giác của góc D
b)ABCD là hình thanh cân
Cho tứ giác ABCD \(AB=BC=AD\) , và\(\widehat{DAB}\) + \(\widehat{BCD}\) = \(^{^{ }180^o}\)
a) Chứng minh rằng DB là tia phân giác của góc \(\widehat{ADC}\) ?
b) Chứng minh rằng tứ giác ABCD là hình thang cân ?
a. Ta có: AD = AB
=> \(\Delta ABD\) là tam giác cân
=> Góc ADB = góc ABD (1)
Mà góc ABD = góc BDC (so le trong) (2)
Từ (1) và (2), suy ra:
BD là tia phân giác của góc ADC
b. Nối AC
Xét 2 tam giác ABC và ABD có:
AD = BC (gt)
AB chung
=> \(\Delta ABD\sim\Delta ABC\) (1)
Ta có: AD = AB = BC (2)
Từ (1) và (2), suy ra: \(\Delta ABD=\Delta ABC\)
=> Góc A = góc B
Ta có: AB//CD
=> Góc D + góc A = 90o (2 góc trong cùng phía)
Mà góc A = góc B
=> Góc C = góc D
=> ABCD là hình thang cân
Nhưng bậy giờ bn chỉ cần chứng minh đó là hình thang là đc
Tứ giác ABCD có AB=BC=AD, góc A=100 độ, góc C=80 độ. Chứng minh rằng:
a) DB là tia phân giác của góc D
b) ABCD là hình thang cân.
a: góc A+góc C=180 độ
=>ABCD là tứ giác nội tiếp
ABCD là tứ giác nội tiếp
=>góc ADB=góc ACB và góc BDC=góc BAC
mà góc BCA=góc BAC(ΔBAC cân tại B)
nên góc ADB=góc BDC
=>DB là phân giác của góc ADC
b: ΔABD cân tại A
=>góc ABD=góc ADB
=>góc ABD=góc BDC
=>AB//CD
Xét tứ giác ABCD có
AB//CD
=>ABCD là hình thang
=>góc BAD+góc ADC=180 độ
mà góc A+góc C=180 độ
nên góc ADC=góc C
=>ABCD là hình thang cân
Tứ giác ABCD có AD=AB=BC và A+C=180 độ.Chứng minh rằng:
a, Tia DB là tia phân giác của góc D
b, Tứ giác ABCD là hình thang cân
Cho tứ giác ABCD có tổng 2 góc A và C bằng 180 độ, AB < AD, gọi AD là tia phân giác của góc BAD. Chứng minh BC = DC
1) Cho tứ giác lồi ABCD có góc B + D= 180°, CB= CD. Chứng minh AC là tia phân giác góc BAD
2) Tứ giác ABCD có AC là tia phân giác góc A, BC= CD, AB<AD
a) Lấy điểm E trên cạnh AD sao cho AE= AB. Chứng minh rằng góc ABC= AEC
b) Chứng minh góc B+ D= 180°
Bài 1 : Cho tứ giác lồi ABCD có góc A + góc C = 180 độ, AB<AD, AC là tia phân giác của góc BAD . Chứng minh rằng BC = DC
Bài 2 : Cho tứ giác lồi ABCD có góc B + góc D = 180 độ. Hai đường thẳng AD và BC cắt nhau tại E, hai đường thẳng AB và DC cắt nhau tại F. Vẽ 2 tia phân giác của 2 góc BFC và CED, chúng cắt nhau tại M. Chứng minh rằng EMF = 90 độ
;Tứ giác ABCD có AD=AB=BC và có góc A + góc B =180*. CMR:
a) tia DB là tia phân giác góc D
b) Tứ giác ABCD là hình thang cân
Đề bài bị sai nhé
Phải là góc A + Góc C bằng 180 độ nhé. Tức là tứ giác ABCD là tứ giác nội tiếp đường tròn. Bài này là bài nâng cao về hình thang cân toán lớp 8