cho ba số x;y;z thỏa mãn:2x=3y;5y=7z;3x-7y+5z=-30. khi đó x+y+z=?
nhanh lên mk sắp hết thời gian rui giup vs cko han 5 like lun
+ \(2x=3y\Rightarrow x=\frac{3y}{2}\left(1\right)\)
+ \(5y=7z\Rightarrow z=\frac{5y}{7}\left(2\right)\)
Thay (1) và (2) vào 3x - 7y + 5z = - 30
Ta có \(3.\frac{3y}{2}-7y+5.\frac{5y}{7}=-30\Rightarrow y=-28\)
Thay y = - 28 vào (1) => x = - 42
Thay y = - 28 vào (2) => x = -20
\(\frac{x}{3}=\frac{y}{2};\frac{y}{7}=\frac{z}{5}\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{10}=\frac{x+y+z}{21+14+10}=\frac{3x-7y+5z}{3.21-7.14+5.10}=-\frac{30}{15}=-2\)
\(\Rightarrow\frac{x+y+z}{45}=-2\Rightarrow x+y+z=-90\)
http://olm.vn/hoi-dap/question/280607.html
bạn tham khảo trang này nha
Bài 1: một canô xuôi khúc sông từ A đến B hết 2 giờ và ngược dòng khúc sông đó hết 3 giờ. Biet van toc cua dong nuoc la 3km/h.Tính quãng sông AB.
Bài 2: a) Tìm cặp số nguyên x,y thỏa mãn : 3x +4y - xy =15
b) cho các số nguyên a,b,c,d thỏa mãn: a+b=c+d và a^2 + b^2= c^2+ d^2.
Chung minh rang a^2014 +b^2014 = c^2014 +d^2014.
cho cặp số (x;y) thỏa mãn 2*(x^2+1)+x^2=2y(x+1) khi đó x+y=?
đặt x+y=a=> y=a-x
thay vào pt điều kiện
2(x^2+1)+x^2=2(a-x)(x+1)
3x^2+2 =2ax+2a-2x^2-2x
5x^2+2x-2ax+2-2a=0
5x^2+2(1-a)x+2(1-a)=0
(1-a)^2-10(1-a)>=0
(1-a)(1-a-10)>=0
(a-1)(a+9)>=0
a<=-9
hoặc
a>=1
(x+y)<-9 hoặc (x+y)>=1
Cho cặp số x,y thỏa mãn x/3=-y/7; xy=189 và x<y. Khi đó x=...........
x/3 = -y/7 ; xy = 189
- ; a/3 = -y/7 = k => x = 3k ; -y = 7k
Thay x = 3k ; -y = 7k vào xy = 189 ta có
3k.7k = 189
=> 21k2 = 189
k2 = 9 => k = -3 hoặc k = 3
k = 3 => x = 9 ; y = -21
k = -3 => x = -9 ; y = 21
Mà x < y => x = -9
Cho thỏa mãn z ∈ C thỏa mãn 2 + i z = 10 z + 1 - 2 i . Biết tập hợp các điểm biểu diễn cho số phức w = 3 - 4 i z - 1 + 2 i là đường tròn I, bán kính R. Khi đó
A. I - 1 ; - 2 , R = 5
B. I 1 ; 2 , R = 5
C. I - 1 ; 2 , R = 5
D. I 1 ; - 2 , R = 5
Cho số phức z thỏa mãn 1 + i z là số thực và z - 2 = m với m thuộc R Gọi m 0 là một giá trị của m để có đúng một số phức thỏa mãn bài toán. Khi đó
Để có đúng một nghiệm phức thỏa mãn bài toán thì phương trình (1) phải có duy nhất một nghiệm a. Khi đó phương trình (1) phải thỏa mãn
Đáp án D
Cho số phức z thỏa mãn 1 + i z là số thực và |z-2|=m với m ∈ R. Gọi m 0 là một giá trị của m để có đúng một số phức thỏa mãn bài toán. Khi đó
A. m 0 ∈ ( 0 ; 1 / 2 )
B. m 0 ∈ ( 1 / 2 ; 1 )
C. m 0 ∈ ( 3 / 2 ; 2 )
D. m 0 ∈ ( 1 ; 3 / 2 )
Cho thỏa mãn z ∈ ℂ thỏa mãn 2 + i z = 10 z + 1 - 2 i . Biết tập hợp các điểm biểu diễn cho số phức w = ( 3 - 4i )z - 1 +2i là đường tròn I, bán kính R. Khi đó
A. I ( -1;-2 ) R = 5
B. I ( 1;2 ), R = 5
C. I ( -1;2 ), R = 5
D. I ( 1;-2 ), R= 5
2 + i z = 10 z + 1 - 2 i
⇔ 2 z - 1 + z + 2 i = 10 z 2 z
Bình phương modun của số thức bên trái và bên phải bằng nhau ta có:
⇔ 2 z - 1 + z + 2 i = 10 z 2 z
= 10 z 2 ⇔ 5 z 2 + 5 = 10 z 2 ⇒ z = 1
Đặt w = x + yi ⇒ w = (3 - 4i )z+2i
⇔ (x + 1 ) + ( y - 2 )i = ( 3 - 4i )z
⇒ x + 1 2 + y - 2 2 = 25
Vậy I ( -1;2 ), R = 5
Đáp án cần chọn là C
Cho a,b,c là các số nguyên thỏa mãn: a³+b³=2021c³. Chứng minh rằng: a+b+c chia hết cho 3
mn ơi mik cần gấp ngay bây giờ ạ!!
\(a^3+b^3=2021c^3\\ \Leftrightarrow a^3+b^3+c^3=2022c^3⋮6\left(2022⋮6\right)\left(1\right)\)
Mặt khác: \(\left(a^3+b^3+c^3\right)-\left(a+b+c\right)=\left(a-1\right)a\left(a+1\right)+\left(b-1\right)b\left(b+1\right)+\left(c-1\right)c\left(c+1\right)\)
Có \(\left(a-1\right)a\left(a+1\right);\left(b-1\right)b\left(b+1\right);\left(c-1\right)c\left(c+1\right)\) là 3 cặp số nguyên liên tiếp nên chia hết cho 6
Do đó \(\left(a^3+b^3+c^3\right)-\left(a+b+c\right)⋮6\)
Kết hợp (1) ta được đpcm