Tinh GTNN
\(\sqrt{x-x+2\sqrt{x-3}}+\sqrt{x+6+6\sqrt{x-3}}\)
cho 2 biểu thức :
\(A=\dfrac{\sqrt{x}+2}{1-\sqrt{x}};B=\left(\dfrac{2\sqrt{x}}{x-\sqrt{x}-6}-\dfrac{\sqrt{x}}{\sqrt{x}-3}\right):\dfrac{\sqrt{x}}{\sqrt{x}-3}\)
1, Rút gọn B
2, Đặt P=A.B
Tìm x ∈ Z .Tìm GTNN của P
1: \(B=\dfrac{2\sqrt{x}-x-2\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}}\)
\(=\dfrac{-x}{\left(\sqrt{x}-2\right)\cdot\sqrt{x}}\)
\(=\dfrac{-\sqrt{x}}{\sqrt{x}-2}\)
Cho biểu thức \(P=\frac{x\sqrt{x}-3}{x-2\sqrt{x}-3}-\frac{2\sqrt{x}-6}{\sqrt{x}+1}+\frac{\sqrt{x}+3}{3-\sqrt{x}}\)
1) Rút gọn P
2)Tính P với \(x=14-6\sqrt{5}\)
3)Tìm GTNN của P
cho A= \(\dfrac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}-\dfrac{2\sqrt{x}+1}{3-\sqrt{x}}\)
1, rút gọn A, tìm ĐKXĐ
2, tìm x để A< 1
3 Tìm GTNN khi B= (x-9). A
1: ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\notin\left\{4;9\right\}\end{matrix}\right.\)
Ta có: \(A=\dfrac{2\sqrt{x}-9-x+9+2x-4\sqrt{x}+\sqrt{x}-2}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)
\(1,A=\dfrac{2\sqrt{x}-9-x+9+2x-3\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\\ A=\dfrac{x-\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\\ A=\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\left(x\ge0;x\ne4;x\ne9\right)\\ 2,A< 1\Leftrightarrow\dfrac{\sqrt{x}+1-\sqrt{x}+3}{\sqrt{x}-3}< 0\\ \Leftrightarrow\dfrac{4}{\sqrt{x}-3}< 0\Leftrightarrow\sqrt{x}-3< 0\Leftrightarrow0\le x< 9\)
a, cho x=\(\sqrt{2+\sqrt{3}}\) + \(\sqrt{2-\sqrt{3}}\) và y=\(\sqrt{7-2\sqrt{6}}\)
tính giá trị của biểu thức P=\(\left(x-y\right)^{2020}\)
b, tìm GTNN của B=\(x-\sqrt{x-2020}\)
\(x=\dfrac{1}{\sqrt{2}}\left(\sqrt{4+2\sqrt{3}}+\sqrt{4-2\sqrt{3}}\right)\)
\(=\dfrac{1}{\sqrt{2}}\left(\sqrt{\left(\sqrt{3}+1\right)^2}+\sqrt{\left(\sqrt{3}-1\right)^2}\right)=\sqrt{6}\)
\(y=\sqrt{\left(\sqrt{6}-1\right)^2}=\sqrt{6}-1\)
\(\Rightarrow x-y=1\Rightarrow P=1\)
\(B=x-2020-\sqrt{x-2020}+\dfrac{1}{4}+\dfrac{8079}{4}\)
\(B=\left(\sqrt{x-2020}-\dfrac{1}{2}\right)^2+\dfrac{8079}{4}\ge\dfrac{8079}{4}\)
\(B_{min}=\dfrac{8079}{4}\) khi \(x=\dfrac{8081}{4}\)
Tìm Gtnn của:
A=\(\sqrt{x-2\sqrt{x-1}}+5\sqrt{x+3-4\sqrt{x-1}}+\sqrt{x+8-6\sqrt{x-1}}\)
\(A=\sqrt{x-2\sqrt{x-1}}\)\(+5\sqrt{x+3-4\sqrt{x-1}}\)\(+8\sqrt{x+8-6\sqrt{x-1}}\)
\(=\sqrt{x-1-2\sqrt{x-1}+1}\)\(+5\sqrt{x-1-4\sqrt{x-1}+4}\)\(+8\sqrt{x-1-6\sqrt{x-1}+9}\)
\(=\sqrt{\left(\sqrt{x-1}-1\right)^2}\)\(+5\sqrt{\left(\sqrt{x-1}-2\right)^2}\)\(+8\sqrt{\left(\sqrt{x-1}-3\right)^2}\)
\(=\sqrt{x-1}-1+5\sqrt{x-1}-10+8\sqrt{x-1}-24\)
\(=16\sqrt{x-1}-35\)
\(A_{min}=-35\Leftrightarrow16\sqrt{x-1}=0\Rightarrow x=1\)
Giúp mình nhé!!
2. Rut gon bieu thuc:
a) \(A=\sqrt{x-2+2\sqrt{x-3}}+\sqrt{x+6+6\sqrt{x-3}},voix>=3\)
3. Tim GTNN cua bieu thuc:
a) \(A=\sqrt{4x^2-12x+9}+\sqrt{x^2-10x+25}+\sqrt{9x^2-6x+1}+\sqrt{16x^2-72x+81}\)
b) \(B=\dfrac{1}{2}\sqrt{x^2}+\sqrt{x^2-2x+1}\)
P = \(\left(\frac{\sqrt{x}+3}{\sqrt{x}-2}+\frac{\sqrt{x}+2}{3-\sqrt{x}}+\frac{\sqrt{x}+2}{x-5\sqrt{x}+6}\right):\left(1-\frac{\sqrt{x}+1}{x+2\sqrt{x}+1}\right)\)
c) Tìm x để A = \(\frac{1}{P}\) đạt GTNN
Cho biểu thức P = \(\frac{x\sqrt{x}+5\sqrt{x}-12}{x-\sqrt{x}-6}-\frac{2\left(\sqrt{x}-3\right)}{\sqrt{x}+2}-\frac{\sqrt{x}+3}{3-\sqrt{x}}\)
a) Tìm ĐKXĐ và rút gọn P
b) Tìm GTNN của P
P= \(\frac{x\sqrt{x}-3}{x-2\sqrt{x}-3}-\frac{2\left(\sqrt{x}-3\right)}{\sqrt{x}+1}+\frac{\sqrt{x}+3}{3-\sqrt{x}}\)
a) Rút gọn P
b) Tính P khi \(x=14-6\sqrt{5}\)
c) Tìm GTNN của P
......................?
mik ko biết
mong bn thông cảm
nha ................