Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyen ngoc ngan
Xem chi tiết
VRCT_Vy Larkyra
Xem chi tiết
Hollow Ichigo
29 tháng 5 2016 lúc 18:49

2 ; chuẩn không

Hollow Ichigo
29 tháng 5 2016 lúc 18:54

Ta có AB^n-AC^n=BC^n

<=> AB^2-AC^2=BC^2 (định lý Py-ta-go)

Nên n=2

o0o Hinata o0o
29 tháng 5 2016 lúc 19:08

     Giả sử :

Do tam giác ABC vuông nên ta có :

    AB2 + AC2 = BC2 ( d/l pi - ta - go )

=> đề sai rùi

   

Demngayxaem
Xem chi tiết
Nguyễn Quang Tùng
5 tháng 2 2017 lúc 18:40

áp dụng đinh lý Py - ta go trong tam giác ABc ta có 

AB^2 - AC^2 = BC^2 

=> n = 2 

đáp số n = 2

Nguyễn Quang Tùng
5 tháng 2 2017 lúc 18:39

1, 

x/y = 2 => x= 2y 

ta lại có x+ 2y + 8 = 0 

=> 2y + 2y + 8 = 0 

=> 4y = - 8 

=> y = - 2 

=> x = - 4 

vậy x- y = \(-4-\left(-2\right)\)= - 2 

đáp số x- y = -2

Hoàng bình phương
Xem chi tiết
Ngọc Hà
Xem chi tiết
Nguyễn Lê Phước Thịnh
8 tháng 3 2022 lúc 19:40

a: Xét ΔABD và ΔACD có

AB=AC

\(\widehat{BAD}=\widehat{CAD}\)

AD chung

Do đó:ΔABD=ΔACD

b: Xét ΔADM vuông tại M và ΔADN vuông tại N có

AD chung

\(\widehat{DAM}=\widehat{DAN}\)

DO đó: ΔADM=ΔADN

Suy ra: DM=DN

hay ΔDMN cân tại D

c: Ta có: AM=AN

DM=DN

Do đó: AD là đường trung trực của MN

hay AD⊥MN

sophiee
Xem chi tiết
Nguyễn Lê Phước Thịnh
23 tháng 4 2021 lúc 22:35

a) Xét ΔNAM vuông tại M và ΔNBM vuông tại M có 

NM chung

MA=MB(M là trung điểm của AB)

Do đó: ΔNAM=ΔNBM(hai cạnh góc vuông)

Suy ra: NA=NB(Hai cạnh tương ứng)

Nguyễn Lê Phước Thịnh
23 tháng 4 2021 lúc 22:35

b) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=3^2+4^2=25\)

hay BC=5(cm)

Vậy: BC=5cm

Nguyễn Thùy Trang
Xem chi tiết
Kuroba Kaito
5 tháng 2 2019 lúc 1:01

Tự vẽ hình

CM: a) Ta có : góc BAD + góc DAC = 900 + góc DAC = góc BAC (1)

Mà góc BAC = 900 + BCA (2)

Từ (1) và (2) suy ra góc DAC = góc DCA 

                      => t/giác ADC là t/giác cân tại D

Ta lại có: góc BAD + góc DAE = 1800 (kề bù)

      => góc DAE = 1800 - góc BAD = 1800 - 900 = 900

Mà góc CAE = 900 - góc DAC (3)

     góc ACE = 900 - góc BCA (4)

Và góc DAC = góc DCA (cmt) (5)

Từ (3);(4);(5) suy ra góc EAC = góc ACE

=> t/giác AEC là t/giác cân tại E

b) Ta có: t/giác ADC cân tại D(cmt) => AD = DC

             t/giác AEC cân tại E (Cmt) => EA = EC

Xét t/giác ADE và t/giác CDE

có AE = CE (cmt)

  AD = DC (Cmt)

  DE :chung

=> t/giác ADE = t/giác CDE (c.c.c)

=> góc ADE = góc EDC (hai góc tương ứng)

Xét t/giác ADN và t/giác CDN

có góc DAN = góc DCN (cm câu a)

     DA = DC (Cmt)

   góc ADN = góc CDN (cmt)

=> t/giác ADN = t/giác CDN (g.c.g)

=> AN = CN (hai cạnh tương ứng) => N là trung điểm của AC

=> góc DNA = góc DNC (hai góc tương ứng)

Mà góc DNA + góc DNC = 1800 (kề bù)

=> 2 ^DNA = 1800

=> ^DNA = 180: 2

=> góc DNA = 900

c) Ta có: góc ADC là góc ngoài của t/giác ADB

=> góc ADC = góc DAB + góc B = 900 + 300 = 1200

Xét t/giác ADC có góc ADC + góc DCA + góc CAD = 1800 (tổng 3 góc của 1 t/giác)

=> 2.^ DCA = 1800 - góc ADC = 1800 - 1200 = 600

=> góc DCA = 600 : 2 = 300

=> góc DCA = góc B = 300

=> t/giác BAC là t/giác cân tại A

ANH TÚ
Xem chi tiết
Nguyễn Lê Phước Thịnh
9 tháng 7 2023 lúc 14:28

a: AN=AB/2

AM=AC/2

mà AB=AC

nên AN=AM

=>ΔANM cân tại A

b: Xét ΔNBE vuông tại N và ΔMCD vuông tại M có

NB=MC

góc B=góc C

=>ΔNBE=ΔMCD

c: ΔNBE=ΔMCD

=>BE=CD

=>BD+DE=CE+DE

=>BD=CE

Phan M
Xem chi tiết
Nguyễn Thảo Trang
12 tháng 11 2021 lúc 13:43

a) Xét tam giác ABC và ADE vuông tại A

+) AB=AD

+) AC=AE

=> tam giác ABC bằng tam giác ADE

=> BC= DE

b)

TA có tam giác ABD và ACE đều vuông cân tại A

=> góc ABD = ADB= ACE=AEC = 45

=> BD//CE (có 2 góc so le trong bằng nhau)

c) Gọi đường NA cắt MC tại I

Xét tam giác NMC có 2 đường cao MH và NI cắt nhau tại A

=> A là trực tâm tam giác NMC

=> CA là đường cao thứ ba

=> CA ⊥ MN

d)

Ta chứng minh được tam giác ADM và AME cân tại M

Suy ra MD=MA và MA=ME
=> MD=ME=MA

=> MA=DE/2

 

 

 

image 
Phươngg Thùyy
Xem chi tiết
Đoàn Đức Hà
22 tháng 6 2021 lúc 22:48

Sửa đề chút. Tam giác \(ABC\)vuông tại \(A\).

a) \(I\)thuộc trung trực của \(AB\)nên \(IA=IB\)suy ra tam giác \(AIB\)cân tại \(I\).

Tam giác \(ABC\)vuông tại \(A\)có \(IA=IB\)\(I\in BC\)suy ra \(I\)là trung điểm của \(BC\)

suy ra \(IA=IB=IC\)\(\Rightarrow\Delta AIC\)cân tại \(I\).

b) Xét tam giác \(BCM\)có \(MI\perp BC,CA\perp MB\)và \(CA\)cắt \(MI\)tại \(N\)nên \(N\)là trực tâm của tam giác \(BCM\).

Suy ra \(EB\perp MC\).

c) \(N\)thuộc đường trung trực của \(BC\)nên \(NB=NC\)

suy ra \(\Delta NAB=\Delta NEC\)(cạnh huyền - góc nhọn) 

suy ra \(AB=EC\)

mà \(MB=MC\)(do \(M\)thuộc đường trung trực của \(BC\))

nên \(MB-AB=MC-EC\Leftrightarrow MA=ME\)

suy ra \(\widehat{MAE}=\frac{180^o-\widehat{AME}}{2}\)

mà \(\widehat{MBC}=\frac{180^o-\widehat{BMC}}{2}\)

mà hai góc này ở vị trí đồng vị do đó \(AE//BC\).

d) Có \(AE//BC\)suy ra \(\widehat{NAE}=\widehat{ACI}\)(hai góc so le trong) 

suy ra \(\widehat{NAE}=\widehat{NAI}\)(vì \(\widehat{IAC}=\widehat{ICA}\)do tam giác \(IAC\)cân tại \(I\))

Tam giác \(AIE\)có \(AN\)vừa là trung tuyến vừa là phân giác nên tam giác \(AIE\)cân tại \(A\).

suy ra tam giác \(AIE\)đều (vì \(IE=IA\)

suy ra \(\widehat{ACB}=\widehat{NAE}=\frac{1}{2}\widehat{EAI}=\frac{1}{2}.60^o=30^o\).

Vậy tam giác \(ABC\)có \(\widehat{ACB}=30^o\)thì \(N\)là trọng tâm tam giác \(AIE\).

Khách vãng lai đã xóa