Cho x,y,z là các số khác 0 và
Chứng minh rằng: Hoặc x = y = z hoặc
Cho x,y,z là các số khác 0 và \(x+\frac{1}{y}=y+\frac{1}{z}=z+\frac{1}{x}\). Chứng minh rằng :
Hoặc x = y = z hoặc x2y2z2=1
Cho x,y,z là các số khác 0 và \(x+\frac{1}{y}=y+\frac{1}{z}=z+\frac{1}{x}\). Chứng minh rằng :
Hoặc x = y = z hoặc x2y2z2=1
\(x+\frac{1}{y}=y+\frac{1}{z}\Rightarrow x-y=\frac{1}{z}-\frac{1}{y}=\frac{z-y}{zy}\)
\(y+\frac{1}{z}=z+\frac{1}{x}\Rightarrow y-z=\frac{1}{x}-\frac{1}{z}=\frac{z-x}{xz}\)
\(z+\frac{1}{x}=x+\frac{1}{y}\Rightarrow z-x=\frac{1}{y}-\frac{1}{x}=\frac{x-y}{xy}\)
\(\Rightarrow\left(x-y\right)\left(y-z\right)\left(z-x\right)=\frac{y-z}{zy}\cdot\frac{z-x}{zx}\cdot\frac{x-y}{xy}\)
\(\Rightarrow\left(x-y\right)\left(y-z\right)\left(z-x\right)=\frac{\left(y-z\right)\left(z-x\right)\left(x-y\right)}{x^2y^2z^2}\)
\(\Rightarrow x^2y^2z^2\left(x-y\right)\left(y-z\right)\left(z-x\right)=\left(x-y\right)\left(y-z\right)\left(z-x\right)\)
\(\Rightarrow\left(x^2y^2z^2-1\right)\left(x-y\right)\left(y-z\right)\left(z-x\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x^2y^2z^2-1=0\\\left(x-y\right)\left(y-z\right)\left(z-x\right)=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x^2y^2z^2=1\\x=y=z\end{cases}}\)
Cho x, y, z là các số khác 0 và \(x+\frac{1}{y}=y+\frac{1}{z}=z+\frac{1}{x}\)
Chứng minh rằng: Hoặc x = y = z hoặc x2y2z2 = 1
x+1/y=y+1/z => x-y=1/z-1/y=(y-z)/yz
Tương tự y-z=(z-x)/zx ; z-x=(x-y)/xy
Nhân theo vế các đẳng thức trên ta đc:
(x-y)(y-z)(z-x)=(x-y)(y-z)(z-x)/x2y2z2
=>(x-y)(y-z)(z-x)x2y2z2-(x-y)(y-z)(z-x)=0
=>(x-y)(y-z)(z-x)(x2y2z2-1)=0
=>x-y=0 hoặc y-z=0 hoặc z-x=0 hoặc x2y2z2-1=0
=>x=y=z hoặc x2y2z2=1(đfcm)
\(\hept{\begin{cases}x-y=\frac{y-z}{yz}\\y-z=\frac{z-x}{xz}\\z-x=\frac{\left(x-y\right)}{xy}\end{cases}}\) Hiển nhiên với x=y=z là nghiệm của hệ (*)
Nếu \(\hept{\begin{cases}x-y\ne0\\y-z\ne0\\z-x\ne0\end{cases}}\) Nhân theo vế ta được \(\left(x-y\right)\left(y-z\right)\left(z-x\right)\left[1-\frac{1}{\left(xyz\right)^2}\right]=0\Rightarrow\left(xyz\right)^2=1\)(**)
Từ (*)(**)=> dpcm
Cho x,y,z là các số khác không và \(x+\frac{1}{y}=y+\frac{1}{z}=z+\frac{1}{x}\)Chứng minh rằng hoặc x=y=z hoặc x2y2z2=1
Ta có: \(x+\frac{1}{y}=y+\frac{1}{z}\Rightarrow x-y=\frac{1}{z}-\frac{1}{y}=\frac{y-z}{yz}\)(1)
\(y+\frac{1}{z}=z+\frac{1}{x}\Rightarrow y-z=\frac{1}{x}-\frac{1}{z}=\frac{z-x}{zx}\)(2)
\(z+\frac{1}{x}=x+\frac{1}{y}\Rightarrow z-x=\frac{1}{y}-\frac{1}{x}=\frac{x-y}{xy}\)(3)
Nhân vế theo vế ba đẳng thức (1), (2), (3), ta được: \(\left(x-y\right)\left(y-z\right)\left(z-x\right)=\frac{\left(x-y\right)\left(y-z\right)\left(z-x\right)}{x^2y^2z^2}\)
\(\Rightarrow\orbr{\begin{cases}\left(x-y\right)\left(y-z\right)\left(z-x\right)=0\left(^∗\right)\\x^2y^2z^2=1\end{cases}}\)
Từ (*) ta giả sử x - y = 0 thì x = y khi đó \(\frac{1}{y}=\frac{1}{z}\Rightarrow y=z\)suy ra x = y = z. Tương tự đối với y - z = 0; z - x = 0
Vậy x = y = z hoặc x2y2z2 = 1
Cho x,y,z là các số hưu tỉ khác nhau và khác 0 thỏa mãn x+1/y= y+1/z = 1/x +x
Chứng minh xyz =1 hoặc xyz = -1
Cho x, y, z là các số \(\ne\) 0 và \(x+\frac{1}{y}=y+\frac{1}{z}=z+\frac{1}{x}\)
Chứng minh rằng: Hoặc x = y = z hoặc x2y2z2 = 1
Cho x,y,z là các số khác 0 và \(x+\dfrac{1}{y}=y+\dfrac{1}{z}=z+\dfrac{1}{x}\). CMR: hoặc x=y=z hoặc \(x^2y^2z^2=1\)
Lời giải:
Từ đkđb suy ra:
$x-y=\frac{1}{z}-\frac{1}{y}=\frac{y-z}{yz}$
$y-z=\frac{1}{x}-\frac{1}{z}=\frac{z-x}{xz}$
$z-x=\frac{1}{y}-\frac{1}{x}=\frac{x-y}{xy}$
$\Rightarrow (x-y)(y-z)(z-x)=\frac{(y-z)(z-x)(x-y)}{(xyz)^2}$
$\Leftrightarrow (x-y)(y-z)(z-x)(1-\frac{1}{x^2y^2z^2})=0$
$\Rightarrow (x-y)(y-z)(z-x)=0$ hoặc $1-\frac{1}{x^2y^2z^2}=1$
$\Rightarrow (x-y)(y-z)(z-x)=0$ hoặc $x^2y^2z^2=1$
Nếu $(x-y)(y-z)(z-x)=0$
$\Rightarrow x=y$ hoặc $y=z$ hoặc $z=x$
Không mất tquat giả sử $x=y$. Khi đó: $\frac{1}{y}=\frac{1}{z}$
$\Rightarrow y=z$
$\Rightarrow x=y=z$. Tương tự khi xét $y=z$ hoặc $z=x$ thì ta cũng thu được $x=y=z$
Vậy $x=y=z$ hoặc $x^2y^2z^2=1$
cho x , y ,z là ba số thực tùy ý thỏa mãn x + y + z = 0 và -1 < hoặc = x < hoặc = 1 , -1 < hoặc = y < hoặc = 1 , -1 < hoặc = z < hoặc = 1 .
Chứng minh rằng đa thức \(x^2+y^4+z^6\)có giá trị không lớn hơn 2
( với abc # 0 và các mẫu đều khác 0)
Cho x ; y ; z là các số nguyên thỏa mãn : x+y+z-4 = 0.
Chứng minh rằng : (x+y)(y+z)(z+x) lớn hơn hoặc bằng x3y3z3
cái này tôi nháp nhiều lần rồi, với lại đây là đề thi hsg mà, k sai đc đâu