Cho a, b, c thuộc Z, Thỏa mãn a+b+c=0. Chứng minh a5+b5+c5 chia hết cho 30
Cho a,b,c là các số nguyên và a + b + c chia hết cho 5. Chứng minh a5 + b5 + c5 chia hết cho 5
Đặt \(A=a^5+b^5+c^5\)
\(A-\left(a+b+c\right)=a^5-a+b^5-b+c^5-c\)
Ta có: \(B=a^5-a=a\left(a^4-1\right)=a\left(a-1\right)\left(a+1\right)\left(a^2+1\right)\)
Nếu \(a\) chia hết cho 5 \(\Rightarrow B\) chia hết cho 5
Nếu a chia 5 dư 1 hoặc -1 \(\Rightarrow\left(a-1\right)\left(a+1\right)\) chia hết chi 5 \(\Rightarrow\)B chia hết cho 5
Nếu a chia 5 dư 2 hoặc -2 \(\Rightarrow a^2+1\) chia 5 dư \(\left(\pm2\right)^2+1=5\Rightarrow a^2+1⋮5\Rightarrow B⋮5\)
Vậy \(B=a^5-a⋮5\) với mọi a nguyên
Hoàn toàn tương tự, \(b^5-b\) và \(c^5-c\) chia hết cho 5 với mọi b; c
\(\Rightarrow A-\left(a+b+c\right)⋮5\Rightarrow A⋮5\) (đpcm)
(Có thể ngắn gọn hơn là \(a^5\equiv a\left(mod5\right)\Rightarrow a^5-a⋮5\) ; \(\forall a\in Z\))
cho a+b+c chia hết cho 5. CMR a5+b5+c5 chia hết cho 5 (a+b+c=0)
Cho 3 số thực a, b, c thỏa mãn a+b+c=0 . CMR a5+b5+c5=\(\dfrac{5}{2}\)abc(a2+b2+c2)
Có : a + b + c = 0
=> (a + b)5 = (-c)5
a5 + 5a4b + 10a3b2 + 10a2b3 + 5ab4 + b5 = -c5
a5 + b5 + c5 = -5a4b - 10a3b2 - 10a2b3 - 5ab4
a5 + b5 + c5 = -5ab(a3 + 2a2b + 2ab2 + b3)
a5 + b5 + c5 = -5ab[(a3 + b3) + (2a2b + 2ab2)]
a5 + b5 + c5 = -5ab[(a + b)(a2 - ab + b2) + 2ab(a + b)]
a5 + b5 + c5 = -5ab(a + b)(a2 + b2 + ab)
a5 + b5 + c5 = 5abc(a2 + b2 + ab) (do a+b+c=0=> a+b=-c)
2(a5 + b5 + c5) = 5abc(2a2 + 2b2 + 2ab)
2(a5 + b5 + c5) = 5abc[a2 + b2 +(a2 + 2ab + b2)]
2(a5 + b5 + c5) = 5abc[a2 + b2 + (a + b)2]
2(a5 + b5 + c5) = 5abc(a2 + b2 + c2) (do a+b=-c=> (a +b )2 = c2
\(\Leftrightarrow\) \(a^5+b^5+c^5=\dfrac{5}{2}abc\left(a^2+b^2+c^2\right)\)
Vậy...
a, Cho 3 số thực a, b, c thỏa mãn a+b+c=0. CMR a5+b5+c5=5/2abc(a2+b2+c2)
b, Tìm số thực x thỏa mãn (3x-2)5+(5-x)5+(-2x-3)5=0
b: (3x-2)^5+(5-x)^5+(-2x-3)^5=0
Đặt a=3x-2; b=-2x-3
Pt sẽ trở thành:
a^5+b^5-(a+b)^5=0
=>a^5+b^5-(a^5+5a^4b+10a^3b^2+10a^2b^3+5ab^4+b^5)=0
=>-5a^4b-10a^3b^2-10a^2b^3-5ab^4=0
=>-5a^4b-5ab^4-10a^3b^2-10a^2b^3=0
=>-5ab(a^3+b^3)-10a^2b^2(a+b)=0
=>-5ab(a+b)(a^2-ab+b^2)-10a^2b^2(a+b)=0
=>-5ab(a+b)(a^2-ab+b^2+2ab)=0
=>-5ab(a+b)(a^2+b^2+ab)=0
=>ab(a+b)=0
=>(3x-2)(-2x-3)(5-x)=0
=>\(x\in\left\{\dfrac{2}{3};-\dfrac{3}{2};5\right\}\)
Cho a + b + c = 0. Chứng minh : (a2 + b2 + c2 )/2 * (a3 + b3 + c3 )/3 = (a5 + b5 + c5 )/5
cho a,b,c thuoc Z thỏa mãn a+b+c=0.Chứng minh a5+b5+c5 chia hết cho 30
Cho a,b,c thuộc Z thỏa mãn a+b+c=0. Cmr : a^5+ b^5 +c^5 chia hết cho 30
Cho a,b thỏa mãn : a+b≥2. Chứng minh rằng:phương trình (x2+2a2bx+b5).(x2+2ab2x+a5)=0 luôn có nghiệm.
a) Chứng minh rằng: a3- a chia hết cho 6 với mọi giá trị a thuộc Z
b)Cho a,b,c thuộc Z thỏa mãn: a+b+c= 450 mũ 2023. Chứng minh rằng: a2+b2+c2 chia hết cho 6
a: a^3-a=a(a^2-1)
=a(a-1)(a+1)
Vì a;a-1;a+1 là ba số liên tiếp
nên a(a-1)(a+1) chia hết cho 3!=6
=>a^3-a chia hết cho 6