Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Vinne
Xem chi tiết
Xyz OLM
31 tháng 1 2022 lúc 9:36

Ta có \(3x^2+7y^2=210\Rightarrow7y^2=210-3x^2\le210\)

=> \(y^2\le30\Rightarrow y\in\left\{0;\pm1;\pm2;\pm3;\pm4;\pm5\right\}\)(vì \(y\in Z\)) (1)

Lại có \(7y^2=210-3x^2=3\left(70-x^2\right)⋮3\)

=> \(y⋮3\left(\text{vì(7;3) = 1}\right)\)(2) 

Từ (1) (2) => y = \(\pm3\) => x = \(\pm\)7

Vậy các cặp (x;y) thỏa là (7;3) ; (7;-3) ; (-7; -3) ; (-7 ; 3) 

Lê Quốc Thái
Xem chi tiết
Tư Linh
Xem chi tiết
Tư Linh
27 tháng 10 2021 lúc 20:59

giúp mình vs, mình cần trước thứ 6 nhé, mik cảm ơn nhiều

phong duat
27 tháng 10 2021 lúc 21:12


tôi bt lm con phía dưới thôi

Cố gắng hơn nữa
Xem chi tiết
alibaba nguyễn
18 tháng 5 2018 lúc 14:05

\(x^2y^2-x^2-7y^2=4xy\)

\(\Leftrightarrow x^2+4xy+4y^2=x^2y^2-3y^2\)

\(\Leftrightarrow\left(x+2y\right)^2=y^2\left(x^2-3\right)\)

\(\Rightarrow x^2-3=n^2\)

\(\Leftrightarrow\left(x-n\right)\left(x+n\right)=3\)

tth_new
19 tháng 5 2018 lúc 20:01

\(x^2y^2-x^2-7y^2=4xy\)

\(\Leftrightarrow x^2+4xy+4y^2=x^2y^2-3y^2\)

\(\Leftrightarrow\left(x+2y\right)^2=y^2\left(x^2-3\right)\)

\(\Leftrightarrow x^2-3=y^2\)

\(\Leftrightarrow x^2-y^2=3\Leftrightarrow\left(x+y\right)\left(x-y\right)=3\)

Từ đó suy ra phương trình có nghiệm duy nhất: \(\hept{\begin{cases}x=2\\y=1\end{cases}}\)(loại vì nếu thử lại VT = -7 , mà VP = 4xy=4.2.1 = 8 . VT không bằng VP nên phương trình vô nghiệm

Doraemon
8 tháng 11 2018 lúc 17:15

x2y2−3y2=x2+4y2+4xy⇔y2(x2−3)=(x+2y)2" role="presentation" style="border:0px; direction:ltr; display:inline-block; float:none; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:1px 0px; position:relative; white-space:nowrap; word-spacing:normal; word-wrap:normal" class="MathJax_CHTML mjx-chtml">

y2" role="presentation" style="border:0px; direction:ltr; display:inline-block; float:none; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:1px 0px; position:relative; white-space:nowrap; word-spacing:normal; word-wrap:normal" class="MathJax_CHTML mjx-chtml"> là số chính phương , nên  là số chính phương

x2−3=a2⇔x2−a2=3⇔(x−a)(x+a)=3" role="presentation" style="border:0px; direction:ltr; display:inline-block; float:none; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:1px 0px; position:relative; white-space:nowrap; word-spacing:normal; word-wrap:normal" class="MathJax_CHTML mjx-chtml">

đến đây bạn lập bảng ước ra là được

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
26 tháng 5 2018 lúc 7:14

Ta có 6x – 7y = 5 ⇔ x = 7 y + 5 6 ⇔ x = y + y + 5 6

Đặt y + 5 6 = t t ∈ ℤ ⇒ y = 6t – 5 = 6 ⇒ x = y + y + 5 6 = 6t – 5 + t = 7t – 5

Nên nghiệm nguyên của phương trình là  x = 7 t − 5 y = 6 t − 5 t ∈ ℤ

Vì x, y nguyên dương nên x > 0 y > 0 ⇒ 7 t − 5 > 0 6 t − 5 > 0 ⇒ t > 5 7 t > 5 6 ⇒ t > 5 7

mà  t ∈ ℤ ⇒ t ≥ 1

Do đó nghiệm nguyên dương nhỏ nhất của phương trình có được khi t = 1

⇒ x = 7.1 − 5 y = 6.1 − 5 ⇒ x = 2 y = 1 ⇒ x − y = 1

Đáp án: C

Ngô Bình
Xem chi tiết
Hà An Thy
16 tháng 9 2020 lúc 20:40

x^4 + 4x^3+ 6x^2+ 4x = y^2

Hướng dẫn: Ta có: x^4 + 4x^3+ 6x^2+ 4x = y^2 

⇔ x^4 +4x^3+6x^2+4x +1- y^2=1

⇔ (x+1)^4 – y^2 = 1

⇔ [(x+1)^2 –y] [(x+1)^2+y]= 1

\(\Leftrightarrow\) \(\hept{\begin{cases}\left(x+1\right)^2-y=1\\\left(x+1\right)^2+y=1\end{cases}}\) hoặc \(\hept{\begin{cases}\left(x+1\right)^2-y=-1\\\left(x+1\right)^2+y=-1\end{cases}}\)

\(\orbr{\begin{cases}1-y=1+y\\-1-y=-1+y\end{cases}}\)

⇒ y = 0 ⇒ (x+1)^2 = 1

⇔ x+1 = ±1 ⇒ x = 0 hoặc x = -2

Vậy ( x, y ) = ( 0, 0 ); ( – 2, 0 )

Chúc bạn hk tốt!!!

 

Khách vãng lai đã xóa
khuatbaluong
Xem chi tiết
shitbo
11 tháng 1 2019 lúc 20:54

\(x^2-6x+y^2+10y=24\)

\(\Leftrightarrow x^2-6x+9+y^2+10x+25=58\Leftrightarrow\left(x-3\right)^2+\left(y+5\right)^2=58\)

\(\Leftrightarrow\left(x-3\right)^2\le58\Leftrightarrow\left(x-3\right)^2\in\left\{0;1;4;9;16;25;36;49\right\}\)

Dễ nhận thấy chỉ có tổng của 49 và: 9; 9 và 49 thỏa mãn (vì các số trên là số chính phương

\(\Rightarrow\orbr{\begin{cases}\hept{\begin{cases}\left(x-3\right)^2=49\Leftrightarrow x-3=7\Leftrightarrow x=10\\\left(y+5\right)^2=9\Leftrightarrow y+5=3\Leftrightarrow y=-2\end{cases}}\\\end{cases}}\)<=> (x-3)^2+(y+5)^2=49+9=9+49

+) (x-3)^2+(y+5)^2=49+9

=> x-3=7=>x=10 và: y+5=3=>y=-2

+) (x-3)^2+(y+5)^2=9+49

=> (x-3)=3=>x=6 và y+5=7=>y=2

Vậy có 2 cặp (x,y)={(6;2);(10;-2)}

thỏa mãn điều kiện

Minh Hiếu
Xem chi tiết
Nguyễn Cao Thái Sơn
Xem chi tiết
Blue Moon
1 tháng 11 2020 lúc 9:35

a.
2x+16x^3+7x^2+x+33x^2+2x6x^3+3x^24x^2+x+34x^2+2x-x+3

Khách vãng lai đã xóa