Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Linh Chi
Xem chi tiết
Nguyễn Việt Lâm
3 tháng 8 2021 lúc 17:18

a.

Với \(a=0\Rightarrow1+124=5^b\Rightarrow b=3\)

Với \(a>0\Rightarrow2^a\) luôn chẵn \(\Rightarrow2^a+124\) luôn chẵn

Mà \(5^b\) luôn lẻ \(\Rightarrow\) không tồn tại \(a>0\) thỏa mãn

Vậy \(\left(a;b\right)=\left(0;3\right)\)

b.

\(3^a\) và \(9^b\) đều luôn lẻ \(\Rightarrow3^a+9^b\) luôn chẵn

Mà 183 lẻ \(\Rightarrow\) không tồn tại a; b thỏa mãn

c.

\(a=0\Rightarrow1+80=3^b\Rightarrow b=4\)

Với \(a>0\Rightarrow2^a\) chẵn \(\Rightarrow2^a+80\) chẵn

Mà \(3^b\) luôn lẻ \(\Rightarrow\) ko tồn tại \(a>0\) thỏa mãn

Vậy \(\left(a;b\right)=\left(0;4\right)\)

Lê Trọng Quý
Xem chi tiết
Nguyễn Đức Trí
2 tháng 9 2023 lúc 12:37

Bài 2 :

a) \(2^a+154=5^b\left(a;b\inℕ\right)\)

-Ta thấy,chữ số tận cùng của \(5^b\) luôn luôn là chữ số \(5\)

\(\Rightarrow2^a+154\) có chữ số tận cùng là \(5\)

\(\Rightarrow2^a\) có chữ số tận cùng là \(1\) (Vô lý, vì lũy thừa của 2 là số chẵn)

\(\Rightarrow\left(a;b\right)\in\varnothing\)

b) \(10^a+168=b^2\left(a;b\inℕ\right)\)

Ta thấy \(10^a\) có chữ số tận cùng là số \(0\)

\(\Rightarrow10^a+168\) có chữ số tận cùng là số \(8\)

mà \(b^2\) là số chính phương (không có chữ số tận cùng là \(8\))

\(\Rightarrow\left(a;b\right)\in\varnothing\)

Nguyễn Đức Trí
2 tháng 9 2023 lúc 12:54

Bài 3 :

a) \(M=19^k+5^k+1995^k+1996^k\left(với.k.chẵn\right)\)

Ta thấy :

\(5^k;1995^k\) có chữ số tận cùng là \(5\) (vì 2 số này có tận cùng là \(5\))

\(\Rightarrow5^k+1995^k\) có chữ số tận cùng là \(0\)

mà \(1996^k\) có chữ số tận cùng là \(6\) (ví số này có tận cùng là số \(6\))

\(\Rightarrow5^k+1995^k+1996^k\) có chữ số tận cùng là chữ số \(6\)

mà \(19^k\left(k.chẵn\right)\) có chữ số tận cùng là số \(1\)

\(\Rightarrow M=19^k+5^k+1995^k+1996^k\) có chữ số tận cùng là số \(7\)

\(\Rightarrow M\) không thể là số chính phương.

b) \(N=2004^{2004k}+2003\)

Ta thấy :

\(2004k=4.501k⋮4\)

mà \(2004\) có chữ số tận cùng là \(4\)

\(\Rightarrow2004^{2004k}\) có chữ số tận cùng là \(6\)

\(\Rightarrow N=2004^{2004k}+2003\) có chữ số tận cùng là \(9\)

\(\Rightarrow N\) có thể là số chính phương (nên câu này bạn xem lại đề bài)

Nguyễn Đức Trí
2 tháng 9 2023 lúc 13:15

Bài 4 :

a) \(5^5-5^4+5^3\)

\(=5^3.\left(5^2-5-1\right)\)

\(=5^3.19\) không chia hết cho 7 (bạn xem lại đề)

b) \(7^6+7^5-7^4\)

\(=7^4.\left(7^2+7-1\right)\)

\(=7^4.\left(49+7-1\right)\)

\(=7^4.55=7^4.11.5⋮11\)

\(\Rightarrow dpcm\)

c) \(1+2+2^2+2^3+...+2^{119}\)

\(=\left(1+2+2^2\right)+2^3\left(1+2+2^2\right)+...+2^{117}\left(1+2+2^2\right)\)

\(=7+2^3.7+...+2^{117}.7\)

\(=7.\left(1+2^3+...+2^{117}\right)⋮7\)

\(\Rightarrow dpcm\)

e) \(3^{n+2}-2^{n+2}+3^n-2^n\)

\(=3^{n+2}+3^n-2^{n+2}-2^n\)

\(=3^n\left(3^2+1\right)-2^n\left(2^2+1\right)\)

\(=3^n.10-2^n.5\)

Ta thấy : \(3^n.10⋮10\)

Ta lại có : \(2^n\) có chữ số tận cùng là số chẵn

\(\Rightarrow2^n.5\) có chữ số tận cùng là số \(0\)

\(\Rightarrow2^n.5⋮10\)

Vậy \(3^n.10-2^n.5⋮10\left(dpcm\right)\)

Tran Thi Nham
Xem chi tiết
BÍCH THẢO
25 tháng 8 2023 lúc 17:31

Xét a=0=>10a+168=1+168=169=132

=> a=0;b=2

Xét a khác 0=>10a có tận cùng bằng 0 .

=> 10a+168 có tận cùng bằng 8 không phải số chính phương .

=> không có b

Vậy a=0; b=2

Xem chi tiết
Trần Minh Hoàng
22 tháng 1 2021 lúc 16:11

Ta thấy 225 là số lẻ nên 100a + 3b + 1 và 2a + 10a + b cũng là các số lẻ.

Do 100a + 3b + 1 là số lẻ mà 100a là số chẵn nên 3b là số chẵn tức b là só chẵn.

Kết hợp với 2a + 10a + b là số lẻ ta có 2a là số lẻ

\(\Leftrightarrow2^a=1\Leftrightarrow a=0\).

Khi đó: \(\left(3b+1\right)\left(b+1\right)=225\)

\(\Leftrightarrow\left(b-8\right)\left(3b+28\right)=0\Leftrightarrow b=8\) (Do b là số tự nhiên).

Vậy a = 0; b = 8.

 

People
28 tháng 3 2023 lúc 22:07

?

 

trần kiều
20 tháng 8 lúc 21:24

nhắn tin vs tuiiiiiiiiii

phan phuong nguyen
Xem chi tiết
Ẩn danh
Xem chi tiết
Trường tiểu học Yên Trun...
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
21 tháng 8 2017 lúc 12:04

Hoàng Hải Ngọc
Xem chi tiết
soyeon_Tiểubàng giải
28 tháng 9 2016 lúc 6:14

a) Vì 5b là số lẻ \(\forall b\in N\)

124 là số chẵn

=> 2a là số lẻ => a = 0

Thay a = 0 vào đề bài ta có: 20 + 124 = 5b

=> 1 + 124 = 5b

=> 5b = 125 = 53

=> b = 3

Vậy a = 0; b = 3

b) + Với a = 0, ta có: 100 + 168 = b2

=> 1 + 168 = b2

=> b2 = 169

Mà \(b\in N\) => b = 13

+ Với a khác 0 thì \(10^a⋮5\); 168 chia 5 dư 3

=> b2 chia 5 dư 3, vô lý vì số chính phương chia 5 chỉ có thể dư 0; 1; 4

Vậy a = 0; b = 13