Cho a,b,c khác 0. Thỏa mãn:
a+b-c/c = b+c-a/a = c+a-b/b
Tính P=(1+b/a)(1+a/c)(1+c/b)
Cho a,b,c là 3 số khác 0 và a+b+c khác 0 thỏa mãn:a/b+c=b/c+a=c/a+b
\(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=\frac{a+b+c}{b+c+c+a+a+b}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)
\(\Rightarrow\frac{b+c}{a}=\frac{c+a}{b}=\frac{a+b}{c}=2\)
\(\Rightarrow\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}=2+2+2=6\)
vậy \(\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}=6\)
cho 3 số a,b,c khác 0 và a+b+c không bằng 0 thỏa mãn điều kiện a/b+c =b/a+c = c/a+b
tính giá trị biểu thức P=b+c/a + a+c/b + a+b/c
cho a,b,c khác 0 thỏa mãn:a+b-c=6.Tính C=a^3+b^3-c^3+3abc/(a-b)^2+(b+c)^2+(c+a)^2
Cho ba số nguyên a,b,c đôi một khác nhau và khác 0 thỏa mãn:a+b+c=0
Tính giá trị của \(P=\left(\frac{a-b}{c}+\frac{b-c}{a}+\frac{c-a}{b}\right)\left(\frac{c}{a-b}+\frac{a}{b-c}+\frac{b}{c-a}\right)\)
cho a,b,c>0 thỏa mãn:a+b+c=1
tìm GTNN:\(P=\frac{a}{a^2+1}+\frac{b}{b^2+1}+\frac{c}{c^2+1}+\frac{1}{9abc}\)
Ta có: \(a+b+c=1\Rightarrow c\le\frac{1}{3}\)
vì vai trò a,b,c như nhau giả sử: \(c\ge a;c\ge b\)
\(\Rightarrow\frac{a}{a^2+1}+\frac{b}{b^2+1}+\frac{c}{c^2+1}\ge\frac{a+b+c}{c^2+1}\ge\frac{9}{10}\)
Theo AM GM 3 số ta có:\(a+b+c\ge3\sqrt[3]{abc}\Rightarrow abc\le\frac{1}{27}\Leftrightarrow\frac{1}{9abc}\le3\)
\(\Rightarrow P\ge\frac{9}{10}+3=\frac{39}{10}\) Dấu bằng xảy ra khi \(a=b=c=\frac{1}{3}\)
cho các số a,b,c khác 0 thỏa mãn:a+b+c=a^2+b^2+c^2 =1 và x:y:z=a:b:c. Chứng minh rằng (x+y+z)^2=x^2+y^2+z^2
bạn nào lm đúng mk tick cho
Cho a,b,c khác 0 , a+b+c khác 0 thỏa mãn 1/a + 1/b + 1/c = 1/a+b+c
Cho a,b,c là 3 số thực khác 0, thỏa mãn a+b-c/c = b+c-a/a =c+a-b/b và a+b+c khác 0.
hãy tính giá trị biểu thức B = (1+b/a). (1+a/c). (1+c/b)
\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}\)
\(\Rightarrow\frac{a+b-c}{c}+1=\frac{b+c-a}{a}+1=\frac{c+a-b}{b}+1\)
\(\Rightarrow\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}\)
+)Nếu a+b+c=0\(\Rightarrow a+b=-c;b+c=-a;c+a=-b\)
\(\Rightarrow B=\frac{a+b}{a}.\frac{c+a}{c}.\frac{b+c}{b}=\frac{-c}{a}.\frac{-b}{c}.\frac{-a}{b}=\frac{-\left(abc\right)}{abc}=-1\)
Nếu \(a+b+ c\ne0\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)
\(\Rightarrow a+b=2c\)
\(b+ c=2a\)
\(c+a=2b\)
\(\Rightarrow B=\frac{2c}{a}.\frac{2b}{c}.\frac{2a}{b}=2.2.2=8\)
a+b-c/c=b+c-a/a=c+a-b/b
=>a+b-1=b+c-1=c+a-1
=>a+b=b+c=c+a
Vì a+b=b+c
=>a=b+c-b
=>a=c
Vì b+c=c+a
=>b=c+a-c
=>b=a
Mà a=c
=>a=b=c
Ta có:B=(1+b/a).(1+a/c).(1+c/b)
=>B=(1+b/b).(1+a/a).(1+c/c)
=>B=(1+1).(1+1).(1+1)
=>B=2.2.2
=>B=8
Vậy B=8
Hok tốt!
a) Cho a,b,c khác 0 thỏa mãn a+ b+c = 0. Tính A=( 1+ a/b) .(1+b/c).(1+c/a)
ta có a+b+c=0 => a=-b-c, b=-a-c, c=-a-b
thay vào A ta được
A=(1-(b+c)/b)(1-(a+c)/c)(1-(a+b)/a)
=(1-1-c/b)(1-1-a/c)(1-1-b/a)
=(-c/b)(-a/c)(-b/a)
=(-abc)/abc
=-1
bạn Nguyễn Thị Lan Hương làm đúng rồi, mk lm cách khác nhé:
BÀI LÀM
\(a+b+c=0\)
\(\Leftrightarrow\)\(\hept{\begin{cases}a+b=-c\\b+c=-a\\c+a=-b\end{cases}}\)
\(A=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\)
\(=\frac{a+b}{b}.\frac{b+c}{c}.\frac{c+a}{a}\)
\(=\frac{-c}{b}.\frac{-a}{c}.\frac{-b}{b}=-1\)
1. Cho a,b,c>0 thỏa mãn 1/a+1/b+1/c=3.Tìm GTNN của P=1/a^2+1/b^2+1/c^2
2.Cho a,b,c khác 0 thỏa mãn a+b+c =0 và 1/a+1/b+1/c=7.Tính 1/a^2+1/b^2+1/c^2
3.Cho a<_b<_ c và a+b+c>0.Cm:a/b+b/c+c/a>_ b/a+c/b+a/c
1. Ta có : \(\left(\frac{1}{a}-\frac{1}{b}\right)^2\ge0\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}\ge\frac{2}{ab}\)
Tương tự : \(\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{2}{bc}\); \(\frac{1}{a^2}+\frac{1}{c^2}\ge\frac{2}{ac}\)
\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\). Dấu " = " xảy ra \(\Leftrightarrow\)a = b = c
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)=9\)
\(9\le3\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\)\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge3\)
Dấu " = " xảy ra \(\Leftrightarrow\)a = b = c = 1
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=7\)\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)=49\)
\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2.\frac{a+b+c}{abc}=49\)
\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=49\)
Xét hiệu \(A=\frac{a}{b}+\frac{b}{c}+\frac{c}{a}-\frac{b}{c}-\frac{c}{b}-\frac{a}{c}\)
\(\frac{a^2c+b^2a+c^2b-b^2c-c^2a-a^2b}{abc}\)
\(\frac{\left(c-b\right)\left(a-c\right)\left(a-b\right)}{abc}\)
Ta thấy c -b \(\ge\)0 ; a - c \(\le\)0 ; a - b \(\le\)0 nên ( c - b ) ( a - c ) ( a - b )\(\ge\)0
Mà abc > 0 nên A \(\ge\)0 => ....