(m : 1 - m x 1): (m x 2009 + m +1)
có cách giải nha
cho 3 số x,y,z thỏa mãn \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{x+y+z}\)
cmr \(\dfrac{1}{x^{2009}}+\dfrac{1}{y^{2009}}+\dfrac{1}{z^{2009}}=\dfrac{1}{x^{2009}+y^{2009}+z^{2009}}\)
giúp mình nha
1/x +1/y +1/z=1/x+y+z
<=>xy+yz+zx/xyz=1/x+y+z
<=>x^2y +xy^2+ 2xyz +y^2z +zx^2 +xyz +z^2x=0
<=>(x^2y +zx^2) +(xy^2 +2xyz +z^2x) +(y^2z +yz^2)=0
<=>x^2(y+z) +x(y+z)^2 +zy(y+z)=0
<=>(y+z)( x^2 +xy +xz zy)=0
<=>(y+z)[ x(x+y) +z(x+y) ]=0
<=>(y+z)(x+y)(x+z)=0
<=>x= -y : y= -z : z= -x
Vậy phương trình kia trở thành;
-1/y^2009 + 1/y^2009 +1/z^2009=1/ -y^2009 + y^2009 +z^2009
<=> 1/z^2009 = 1/z^2009
<=> z=z (luôn đúng)
TINH NHANH
( M : 1 - M X 1 ) : ( M X 2009 + M + 1 )
(m+1 −m x 1 ) : 9m x 2009 +m +1)
=(m+1−m)÷(2010m+1)
=1÷(2010m+1)
=12010m+1
Giải và biện luận .
a, \(\left(2a-1\right)x+\left(3+2\right)x=\left(m^2+3\right)x-1\)
b, \(\frac{x+4}{x+2+m}+\frac{x-1}{x+2-m}\)
Trình bày cách lm nưua nha
Bài 6: Tính nhanh:
326 x 728 + 327 x 272
2008 x 867 + 2009 x 133
1235 x 6789x ( 630 - 315 x 2 )
(m : 1 - m x 1) : (m x 2008 + m + 2008)
TICK CHO MÌNH NHA
Giải:
326 x 728 + 327 x 272
= 326 x 728 + 326 x 272 + 272
= 326 x ( 728 +272 ) +272
= 326 x 1000 + 272
= 326 000 +272
= 326 272
TICK CHO MÌNH NHA
Giải:
2008 x 867 +2009 x 133
= 2008 x 867 + 2008 x 133 +133
= 2008 x ( 867 + 133) +133
= 2008 x 1000 +133
= 2 008 000 + 133
= 2 008 133
a) Ta có: \(326\cdot728+327\cdot272\)
\(=326\cdot728+326\cdot272+272\)
\(=32600+272\)
\(=32872\)
b) Ta có: \(2008\cdot867+2009\cdot133\)
\(=2008\cdot867+2008\cdot133+133\)
\(=2008000+133\)
\(=2008133\)
c) Ta có: \(1235\cdot6789\cdot\left(630-315\cdot2\right)\)
\(=1235\cdot6789\cdot0\)
=0
các bạn ơi giúp mình giải 3 bài này với:
Bài 1: Cho phân số A=5/2x+1( x thuộc Z). Tìm x để phân số là số nguyên
Bài 2; Tìm các số nguyên m, n biết;m/2/-1/n=1/2(viết cách giải đầy đủ nha)
Bài 3; So sánh 2 phân số: A=a+2/a và B=a+4/a+2( viết cách giải đầy đủ nha)
B1: để x là số nguyên thì: 5 chia hết cho 2x+1
=> \(2x+1\in U\left(5\right)\)
+> \(2x+1\in\left\{1;-1;5;-5\right\}\)
=> \(x\in\left\{0;-1;2;-3\right\}\)
xc{0;-1;2;-3}
HT
@@@@@@@@@@@@
Tập hợp M = {0; 1; 2; 3; 4; 5} có thể được viết lại bằng cách khác là:
A.M = {x ∈ N / x ≤ 5}
B.M = {x ∈ N*/ x < 5}
C.M = {x ∈ N*/ x < 5}
D.M = {x ∈ N/ x < 5}
Các bạn trl cách giải giúp mình luôn nha
cho phương trình ẩn x sau :(m-3)x+m^2 -9=0(1) a, giải phương trình với m=2 b,Tìm m để phương trình (1) có nghiệm duy nhất .Tìm nghiệm duy nhất đó
mk cảm ơn trước nha
a: Khi m=2 thì pt sẽ là \(-x-5=0\)
hay x=-5
b: Để phương trình có nghiệm duy nhất thì m-3<>0
hay m<>3
Tính M= 2 mũ 2010 - ( 2 mũ 2009 + 2 mũ 2008 + ...+ 2 mũ 1 + 2 mũ 0) Nhanh nha Ghi rõ và giải thích cách làm cho mình chứ Mình nhìn sách giải phía sau không hiểu
Cho hai phương trình: \(\dfrac{x-2013}{2011}+\dfrac{x-2011}{2009}=\dfrac{x-2009}{2007}+\dfrac{x-2007}{2005}\left(1\right)\) và \(\dfrac{x^2-\left(2-m\right)x-2m}{x-1}=0\left(2\right)\) ( Với m là tham số). Với giá trị nào của m thì 2 phương trình đã cho tương đương
`(x-2013)/2011+(x-2011)/2009=(x-2009)/2007+(x-2007)/2005`
`<=>(x-2013)/2011+1+(x-2011)/2009+1=(x-2009)/2007+1+(x-2007)/2005+1`
`<=>(x-2)/2011+(x-2)/2009=(x-2)/2007+(x-2)/2005`
`<=>(x-2)(1/2011+1/2009-1/2007-1/2005)=0`
`<=>x-2=0`
`<=>x=2`
PT tương đương khi cả 2 PT có cùng nghiệm
`=>(x^2-(2-m).x-2m)/(x-1)` tương đương nếu nhận `x=2` là nghiệm
Thay `x=2`
`<=>(4-(2-m).2-2m)/(2-1)=0`
`<=>4-4+2m-2m=0`
`<=>0=0` luôn đúng.
Vậy phương trình `(x-2013)/2011+(x-2011)/2009=(x-2009)/2007+(x-2007)/2005` và `(x^2-(2-m).x-2m)/(x-1)` luôn tương đương với nha `forall m`
\(\left(1\right)\Leftrightarrow\dfrac{x-2013}{2011}+1+\dfrac{x-2011}{2009}+1=\dfrac{x-2009}{2007}+1+\dfrac{x-2007}{2005}+1\)
\(\Leftrightarrow\dfrac{x-2}{2011}+\dfrac{x-2}{2009}-\dfrac{x-2}{2007}-\dfrac{x-2}{2005}=0\)
\(\Leftrightarrow x-2=0\)
\(\Leftrightarrow x=2\)
(1) và (2) tương đương khi và chỉ khi (1) và (2) có cùng tập nghiệm khi và chỉ khi (2) có nghiệm duy nhất x = 2
<=> x2 - (2 - m)x - 2m = 0 có nghệm kép x = 2 (3) hoặc x2 - (2 - m)x - 2m = 0 có 2 nghiệm x = 1 và x = 2
Giải (3) ta có: \(\left\{{}\begin{matrix}\Delta=\left[-\left(2-m\right)\right]^2+8m=0\\2^2-2\left(2-m\right)-2m=0\end{matrix}\right.\)
<=> m2 + 4m + 4 = 0
<=> (m + 2)2 = 0
<=> m = -2
Giải (4) ta có:
\(\left\{{}\begin{matrix}2^2-2\left(2-m\right)-2m=0\\1^2-\left(2-m\right)-2m=0\end{matrix}\right.\)
<=> -m - 1 = 0
<=> m = -1
Vậy có 2 giá trị của m thoả mãn là -2 và -1
(1) <=> \(\dfrac{x-2013}{2011}+1+\dfrac{x-2011}{2009}+1=\dfrac{x-2009}{2007}+1+\dfrac{x-2007}{2005}+1\)
<=> \(\dfrac{x-2}{2011}+\dfrac{x-2}{2009}-\dfrac{x-2}{2007}-\dfrac{x-2}{2005}=0\)
⇔x−2=0
⇔x=2
(1) và (2) tương đương khi và chỉ khi (1) và (2) có cùng tập nghiệm khi và chỉ khi (2) có nghiệm duy nhất x = 2
<=> x2 - (2 - m)x - 2m = 0 chỉ có nghệm x = 2 (3) hoặc x2 - (2 - m)x - 2m = 0 có 2 nghiệm x = 1 và x = 2
Giải (3) ta có:
x2 - (2 - m)x - 2m = 0
<=> x2 - 2x + mx - 2m = 0
<=> (x - 2)(x + m) = 0
<=> \(\left[{}\begin{matrix}x-2=0\\x+m=0\end{matrix}\right.\)
Để x2 - (2 - m)x - 2m = 0 chỉ có nghiệm x = 2 thì x + m = 0 có nghiệm x = 2 <=> m = -2
Giải (4) ta có:
\(\left\{{}\begin{matrix}2^2-2\left(2-m\right)-2m=0\\1^2-\left(2-m\right)-2m=0\end{matrix}\right.\)
<=> -m - 1 = 0
<=> m = -1
Vậy có 2 giá trị của m thoả mãn là -2 và -1