Đặt tính rồi tính.
1 103 x 3 1 021 x 9 2 041 x 4
Đặt tính rồi tính.
1 103 x 3 1 021 x 9 2 041 x 4
Đặt tính rồi tính:
3 507 x 2 4 806 : 6 1 041 x 5 7 168 : 7
Bài 1: Tính tổng:
a) S = 1+2+3+….+2021 b) P = 1+3+5+……+2021
c) Q = 2+4+6+.......+ 2020 d) M = 1+4+7+.....+298
a) \(S=1+2+3+...+2021\)
\(=\left(2021+1\right).2021:2\)
\(=2043231\)
b) \(P=1+3+5+...+2021\)
\(=\left(2021+1\right).[\left(2021-1\right):2+1]:2\)
\(=2022.1011:2\)
\(=1022121\)
Câu 30. Giá trị của tổng
S =1+ 2 - 3 - 4 + 5 + 6 - 7 - 8 + 9 +10 -... + 2018 - 2019 - 2020 + 2021 là
A. 2020 . B. 2021. C. 1. D. -1.
Cho tổng \(T=\dfrac{2}{2^1}+\dfrac{3}{2^2}+\dfrac{4}{2^3}+...+\dfrac{2020}{2^{2019}}+\dfrac{2021}{2^{2020}}\)
So sánh T với 3
\(2T=2+\dfrac{3}{2^1}+\dfrac{4}{2^2}+...+\dfrac{2020}{2^{2018}}+\dfrac{2021}{2^{2019}}\)
\(T=2T-T=2+\dfrac{1}{2^1}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2019}}-\dfrac{2021}{2^{2020}}\).
Đặt \(S=\dfrac{1}{2^1}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2019}}\Rightarrow2S=1+\dfrac{1}{2^1}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2018}}\Rightarrow S=2S-S=1-\dfrac{1}{2^{2019}}\).
Từ đó \(T=2+1-\dfrac{1}{2^{2019}}-\dfrac{2021}{2^{2020}}< 3\).
Cho tổng gồm 2020 số hạng
CMR
S=1/4+2/42+3/43+....+2020/42020 < 1/2
HELP ME
TRÌNH BÀY DIỄN GIẢI ĐẦY ĐỦ NHA!!!!
tính tổng m= 1+ 3/ 2+ 5/2+...+4039/ 2+ 2020
Đề bài sai bạn nhé , 5/2 phải là 4/2 mới làm ra kq đc
tính tổng (-1)+(-2)+(-3)+4...+(-2019)+2020
\(M=\left(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+....+\frac{1}{2020^2}\right)X\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2020^2}\right)-\left(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2020^2}\right)X\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2020^2}\right)\)Làm nhanh và ngắn gọn nhất có thể nhé ! mình tik cho 10 tik
\(M=\left(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2020^2}\right)\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2020^2}\right)-\left(\frac{1}{1^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2020^2}\right)\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2020^2}\right)\)
\(M=\left(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2020^2}\right)\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2020^2}\right)(1-1)\)
\(M=\left(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2020^2}\right)\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2020^2}\right).0\)
\(M=0\)
Vì số bị trừ và số trừ gồm hai tích đảo ngược nhau nên M=0
1/2+1/3+2/3+1/4+2/4+3/4+......+1/2020+2=2020+3/2020+.....+2019/2020