cho (P) : \(y=ax^2\)và (d): y=3x - 1
biện luận theo a số giao điểm của (P) và (d)
Cho hàm số: y=ax+b
Tìm a, b biết đồ thị hàm số đã cho song song với đường thẳng (d1): y= 3x - 5 và đi qua giao điểm Q của hai đường thẳng (d2) y= 2x - 3 (d3) y= - 3x + 2
Cho( P ): y=x2 và đường thẳng ( D ): y=2x + m - 3. Biện luận theo m số giao điểm của ( D ) và ( P)
Hoành độ Giao điểm chính là nghiệm của D=P vậy ta xem nó có bao nhiêu nghiệm
x^2=2x+m-3
(x-1)^2=m-4
Nếu m=4 => có một nghiệm x=1 có 1 giao điểm
nếu m<4 => không tồn tại x => không có giao điểm
m>4 => \(\orbr{\begin{cases}x=1-\sqrt{m-4}\\x=1+\sqrt{m-4}\end{cases}}\) => có 2 điểm
xác định (d):y=ax+b trong các TH:
a) (d)//(d'):y=-3x - `2/3` và đi qua điểm A(-2;-4)
b) (d) đi qua điểm B và có hệ số góc là -3. Biết B là giao điểm của (d''):y=2x-2 với trục hoành
a: Vì (d)//(d') nên \(\left\{{}\begin{matrix}a=-3\\b\ne-\dfrac{2}{3}\end{matrix}\right.\)
Vậy: (d): \(y=-3x+b\)
Thay x=-2 và y=-4 vào (d), ta được:
\(b-3\cdot\left(-2\right)=-4\)
=>b+6=-4
=>b=-10
Vậy: (d): y=-3x-10
b: Tọa độ B là:
\(\left\{{}\begin{matrix}y=0\\2x-2=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=0\\2x=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=0\end{matrix}\right.\)
(d) có hệ số góc là -3 nên a=-3
Vậy: (d): y=-3x+b
Thay x=1 và y=0 vào (d), ta được:
\(b-3\cdot1=0\)
=>b-3=0
=>b=3
Vậy: (d): y=-3x+3
1) Vẽ đồ thị (d) của hàm số y = 2x – 3
2) Tìm tọa độ giao điểm của (d) và (d1) y = - 3x + 2 bằng phép tính.
3) Xác định các hệ số a và b của hàm số y = ax + b, biết rằng đồ thị (d2) của hàm số
này cắt trục tung tại điểm có tung độ là -2 và (d), (d1), (d2) đồng quy.
2: Tọa độ giao điểm là:
\(\left\{{}\begin{matrix}2x-3=-3x+2\\y=2x-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)
Cho hàm số y=-x^2 (P) và y=4x+4 (d) a) tìm toạ độ giao điểm của (P) và (d) b) xác định đường thẳng (d'): y=ax+b, biết d' song song d và d' cắt (P) tại điểm có hoành độ là -1.
a) pt hoành độ giao điểm \(x^2+4x+4=0\Rightarrow\left(x+2\right)^2=0\Rightarrow x=-2\)
\(\Rightarrow y=-\left(-2\right)^2=-4\Rightarrow\) tọa độ giao điểm là \(\left(-2;-4\right)\)
b) Vì \((d)\parallel (d')\Rightarrow \) \(\left\{{}\begin{matrix}a=4\\b\ne4\end{matrix}\right.\Rightarrow y=4x+b\)
Vì (d') cắt (P) tại điểm có hoành độ là -1 \(y=-\left(-1\right)^2=-1\)
\(\Rightarrow\) điểm đó có tọa độ là \(\left(-1;-1\right)\)
\(\Rightarrow-1=-4+b\Rightarrow b=3\Rightarrow y=4x+3\)
trong mp tọa độ Oxy cho điểm A(1;3), parabol (P): y=ax^2 và đường thẳng (d): y=ax + 3 - a
giả sử B và C là giao điểm của (P) và (d). tìm a để AB = 2AC
cho hàm sốP=y=ax^2 và đường thẳng (d) y=7x+7
a,tìm a để đường thẳng hàm số đi qua A(-1;-1)
b,với a vừa tìm câu (a) tìm tọa đọ giao điểm p và d theo phương pháp đại số
a) Để đường thằng hàm số đi qua A (-1 ; 1) thì P = -1 = a . (-1)2 => a = -1
b) Tọa độ giao điểm của P và d là : -x2 = 7x + 7
< = > x2 + 7x + 7 = 0
< = > \(\Delta\)=72-4.1.7=21 > 0
Vậy PT có 2 nghiệm phân biệt x1 = \(\frac{-7+\sqrt{21}}{2}\)=> y1 = 7x1 + 7 = \(\frac{-35+7\sqrt{21}}{2}\)
x2 = \(\frac{-7-\sqrt{21}}{2}\)=> y2=7x2+7 = \(\frac{-35-7\sqrt{21}}{2}\)
Ta có: Tọa độ giao điểm của P và d là A (\(\frac{-7+\sqrt{21}}{2}\) ; \(\frac{-35+7\sqrt{21}}{2}\))
B(\(\frac{-7-\sqrt{21}}{2}\);\(\frac{-35-7\sqrt{21}}{2}\))
Cho hàm số y = 2x + 3 (d) và y = x − 1 (d’)
a, Tìm tọa độ giao điểm M của hai đường thẳng (d) và (d’).
b, Tìm hệ số a và b của hàm số y = ax + b có đồ thị đi qua điểm (−2; 3) và song song với đường thẳng (d).
a. \(PTHDGD:\left(d\right)-\left(d'\right):2x+3=x-1\)
\(\Rightarrow x=-4\left(1\right)\)
Thay (1) vào (d'): \(y=-4-1=-5\)
\(\Rightarrow M\left(-4;-5\right)\)
\(a,\text{PT hoành độ giao điểm: }2x+3=x-1\\ \Leftrightarrow x=-4\Leftrightarrow y=-5\\ \Leftrightarrow M\left(-4;-5\right)\\ b,\Leftrightarrow\left\{{}\begin{matrix}-2a+b=3\\a=2;b\ne3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=7\end{matrix}\right.\)
biện luận theo m số giao điểm của (p) : X2 và (d) : y= -2mx +3(2m +3 )