Tìm GTNN của A=x2+2015 / (x+1)2
mấy bạn làm hộ mk với
Hãy tìm GTLN của biểu thức: P= -x2-y2+4x-4y+2
Mấy Bạn giúp mik đi xin ó :))
\(P=-\left(x^2-4x+4\right)-\left(y^2+4y+4\right)+10\)
\(=-\left(x-2\right)^2-\left(y+2\right)^2+10\le10\)
\(minP=10\Leftrightarrow\) \(\left\{{}\begin{matrix}x=2\\y=-2\end{matrix}\right.\)
Bài 1 : Cho biểu thức A = √x + 1 / √x-1.
a. Tính giá trị của A tại x = 16/9 và x=1,44
b. Tìm giá trị của x để A = 5.
c. Tìm x nguyên để A nguyên.
Bài 2: Cho A = √2014 - |x| + 2015
a. Tìm điều kiện của x để A có nghĩa.
b. Tìm x để A = 2020.
c. Tính A với x = -414
d. Tìm GTNN của A.
[ Bạn nào làm được câu nào thì làm hộ mình nhé ]
Tìm GTNN của:F=x2+4x+2015/2016x2
mn giải hộ e vs ạ
a,Tìm GTNN của A = | x - 3 | + ( 50 ) b,Tìm GTNN của B = 2014 - | x+8 | c, Tìm GTNN của C = | x-100 | + | y +2014 | - 2015
MỌI NGƯỜI GIÚP MK NHA MK CẦN GẤP HẬU TẠ SAU
a, Vì |x-3| \(\ge\)0
=>A=|x-3|+50\(\ge\)50
Dấu "=" xảy ra khi x=3
Vậy GTNN của A = 50 khi x=3
b, Vì |x+8| \(\ge0\)
=>B=2014-|x+8|\(\le2014\)
Dấu "=" xảy ra khi x=-8
Vậy GTLN của B = 2014 khi x=-8
c, Vì \(\hept{\begin{cases}\left|x-100\right|\ge0\\\left|y+2014\right|\ge0\end{cases}}\)
\(\Rightarrow\left|x-100\right|+\left|y+2014\right|\ge0\)
\(\Rightarrow C=\left|x-100\right|+\left|y+2014\right|-2015\ge-2015\)
Dấu "=" xảy ra khi x=100,y=-2014
Vậy GTNN của C=-2015 khi x=100,y=-2014
Tìm GTNN của A\(=\left|2014-x\right|+\left|2015-x\right|+\left|2016-x\right|\)
Các bạn làm nếu được thì kẻ bảng nhé
\(A=\left|2014-x\right|+\left|2015-x\right|+\left|2016-x\right|\)
\(\Leftrightarrow A=\left|x-2014\right|+\left|2016-x\right|+\left|x-2015\right|\)
\(\Leftrightarrow A\ge\left|x-2014+2016-x\right|+\left|x-2015\right|\)
\(\Leftrightarrow A=2\)
Dấu "=" xảy ra \(\Leftrightarrow\)x = 2015
Vậy GTNN của A = 2 tại x = 2015
\(A=\left|x-2014\right|+\left|2015-x\right|+\left|2016-x\right|\)
\(\ge x-2014+0+2016-x=2\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x-2014\ge0\\2015-x=0\\2016-x\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge2014\\x=2015\\x\le2016\end{cases}}\Leftrightarrow x=2015\) (thỏa mãn đồng thời cả ba trường hợp)
Cách của bạn Siêu sao bóng đá là một cách! Nhưng mình thấy cách của mình hay dùng trong SBT 7 tập 1 ,điển hình là trang 64 bài I.7
Tìm GTLN hoặc GTNN của đa thức sau
A=2x^2+10x-1
B=5x-x^2
Chú ý đổi ra dạng a^2-ab2+b^2 = (a-b)^2 rồi ms tìm GTLN or GTNN
bạn nào làm dc mình sẽ tick hộ cho
a. Tìm GTNN của A = | x - 2011 | + | x - 200 |
b. Tìm GTLN của M = | x - 2/5 | + 2018
mn làm nhanh hộ mik vs_ mk cần nó gấp
help me !! help me!!
Bài 1:Tìm GTNN của biểu thức A= \(x-2\sqrt{xy}+3y-2\sqrt{x}+1\)
Bài 2: Cho các số dương a,b,c thỏa mãn: \(a+b+c=6abc\)
Tìm GTNN của A= \(\frac{a}{b^3}+\frac{b}{c^3}+\frac{c}{a^3}\)
Làm hộ tớ với!!! Mốt Thi r các bạn ạ!!! Bây giờ còn chưa được ngủ đây!!!
Áp dụng BĐT Cô-si cho 2 số dương ta có:
\(\frac{1}{a^2}+\frac{1}{b^2}\ge\frac{2}{ab}\left(1\right)\)
\(\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{2}{bc}\left(2\right)\)
\(\frac{1}{c^2}+\frac{1}{a^2}\ge\frac{2}{ac}\left(2\right)\)
Từ (1) ;(2) và (3) suy ra:
\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=\frac{a+b+c}{abc}=6\)
Vậy \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge6\).Dấu "=" xảy ra <=>\(\hept{\begin{cases}a+b+c=6abc\\\frac{1}{a^2}=\frac{1}{b^2}=\frac{1}{c^2}\end{cases}=>a=b=c=\frac{1}{\sqrt{2}}}\)
A = \(x-2\sqrt{xy}+3y-2\sqrt{x}+1\)
\(=\left(\frac{x}{3}-\frac{2\times\sqrt{3}\sqrt{xy}}{\sqrt{3}}+3y\right)+\left(\frac{2x}{3}-\frac{2\times\sqrt{2}\times\sqrt{3}\sqrt{x}}{\sqrt{2}\times\sqrt{3}}+\frac{3}{2}\right)-\frac{1}{2}\)
\(=\left(\frac{\sqrt{x}}{\sqrt{3}}-\sqrt{3y}\right)^2+\left(\sqrt{\frac{2x}{3}}-\sqrt{\frac{3}{2}}\right)^2-\frac{1}{2}\)
\(\ge-\frac{1}{2}\)
Ta có
\(\frac{a}{b^3}+\frac{1}{ab}\ge\frac{2}{b^2}\)
\(\frac{b}{c^3}+\frac{1}{bc}\ge\frac{2}{c^2}\)
\(\frac{c}{a^3}+\frac{1}{ac}\ge\frac{2}{a^2}\)
Cộng vế theo vế ta được
\(\frac{a}{b^3}+\frac{b}{c^3}+\frac{c}{a^3}\ge2\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)-\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)\)
Mà \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\)
Từ đó \(\frac{a}{b^3}+\frac{b}{c^3}+\frac{c}{a^3}\ge\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}=\frac{a+b+c}{abc}=6\)
A=/X+1/+/2Y-4/+2
B=-5/[X+1]^2
TÌM GTNN,GTNN hộ mk nhé