cho x,y thuộc Z :
nếu 3x+2y \(\Lambda\) 17 thì 10x+y\(\Lambda\) 17 và ngược lại
3 ) Tìm số nguyên n để 2n+ 3 chia hết cho n-2
4) a) Nếu x + 2y : 5 thì 3x - 4 y : 5
b) Nếu 3x +2y : 17 thì 10x + y : 17 ( x , y thuộc tập số tự nhiên N )
Mình cần gấp nhé
Chứng minh với ( Với x,y thuộc Z ) ta có
a, x+4y: hết 13 khi và chỉ khi 10x+y : hết 13
b, 2x+3y : hết 17 khi và chỉ khi 9x+5y : hết 17
c, 3x+2y : hết 17 khi và chỉ khi 10x+y : hết 17
Chứng minh với x,y thuộc Z ta có :
3x + 2y chia hết cho 17 <=> 10x+y chia hết cho 17
Ta có :
3x + y chia hết cho 17
Suy ra ( 3x + 2y)9 = 27x + 18y cũng chia hết cho 17 (1)
Mà: (27x + 18y) - (10x + y) = 17x - 17y chia hết cho 17 (2)
Từ (1) và (2) suy ra điều phải chứng minh.
Chứng minh rằng :
a/ Nếu 3x+5y chia hết cho 7 ( a;b thuộc N ) thì x +4y chia hết cho 7 ( x;y thuộc N )
Điều ngược lại có đúng không ?
b/ Nếu 2x+3y chia hết cho 17 ( a;b thuộc N ) thì 9x+5y chia hết cho 17( x;y thuộc N )
Điều ngược lại có đúng không ?
Với x,y,z thuộc Z. Nếu 6x+10y+z ⋮ 21 thì 3x-2y+4z ⋮ 21 và ngược lại
Đặt \(A=6x+10y+z\), \(B=3x-2y+4z\)
Ta có : \(A+5B=\left(6x+10y+z\right)+5\left(3x-2y+4z\right)\)
\(=21x+21z=21\left(x+z\right)⋮21\forall x,z\inℤ\)
\(\Rightarrow A+5B⋮21\)(1)
+) Nếu \(A⋮21\) thì từ (1) \(\Rightarrow5B⋮21\Rightarrow B⋮21\) ( Do \(5⋮̸21\) )
+) Nếu \(B⋮21\Rightarrow5B⋮21\) thì từ (1) \(\Rightarrow A⋮21\)
Vậy ta có điều phải chứng minh.
Vì \(6x+10y+z⋮21\)\(\Leftrightarrow4.\left(6x+10y+z\right)⋮21\)\(\Leftrightarrow24x+40y+4z⋮21\)
Ta có: \(\left(24x+40y+4z\right)-\left(3x-2y+4z\right)\)
\(=24x+40y+4z-3x+2y-4z\)
\(=\left(24x-3x\right)+\left(40y+2y\right)+\left(4z-4z\right)\)
\(=21x+42y=21.\left(x+2y\right)⋮21\)
mà \(24x+40y+4z⋮21\)\(\Rightarrow3x-2y+4z⋮21\)
Điều ngược lại:
Vì \(3x-2y+4z⋮21\)\(\Leftrightarrow5.\left(3x-2y+4z\right)⋮21\)\(\Leftrightarrow15x-10y+20z⋮21\)
Ta có: \(\left(15x-10y+20z\right)+\left(6x+10y+z\right)\)
\(=15x-10y+20z+6x+10y+z\)
\(=\left(15x+6x\right)-\left(10y-10y\right)+\left(20z+z\right)\)
\(=21x+21z=21.\left(x+z\right)⋮21\)
mà \(15x-10y+20z⋮21\)\(\Rightarrow6x+10y+z⋮21\)
Vậy \(6x+10y+z⋮21\Leftrightarrow3x-2y+4z⋮21\)
Chứng minh rằng nếu 3x + 2y chia hết cho 17 thì 10x + y cũng chia hết cho 17 .
Ta có
3x + 2y chia hết cho 17
=> 9(3x+2y) chia hết cho 17
=> 27x + 18y chia hết cho 17
=> (27x +18y) - (17x + 17y) chia hết cho 17( vì 17 chia hết cho 17 nên 17x+17Y chia hết cho 17)
=> 10x + y chia hết cho 17
Vậy nếu 3x + 2y chia hết cho 17 thì 10x + y cũng chia hết cho 17 ( ĐPCM )
ta có :
3x + 2y chia hết cho 17
suy ra 9( 3x + 2y) chia hết cho 17
suy ra 27x + 18y chia hết cho 17
suy ra ( 27x + 18y ) - 9 17x + 17y) chia hết cho 17 ( vì 17 chia hết cho 17 nên 17x + 17y chia hết cho 17)
suy ra 10x + y chia hết cho 17
vậy nếu 3x + 2y chia hết cho 17 thùi 10x + y chũng chia hết cho 17
Ta có 3x + 2y chia hết cho 17
=> 9(3x+2y) chia hết cho 17
=> 27x + 18y chia hết cho 17
=> (27x +18y) - (17x + 17y) chia hết cho 17( vì 17 chia hết cho 17 nên 17x+17Y chia hết cho 17)
Học tốt !
cho x,y thuộc N.CMR:
nếu 10x+y chia hết cho 17 thì x-5y chia hết cho 17
nếu 3x+4y+5z chia hết cho 11 thì 9x+y+4z chia hết cho 11
Chứng tỏ: nếu x,y thuộc N và:
a) 3x-4x chia hết cho 5
b) 3x+xy chia hết cho 17 thì 10x+y chia hết cho 17
phần b là 3x+2y, còn phần a là 3x-4y nhé
Câu hỏi : Cho x,y thuộc N . Chứng minh 3x+2y chia hết cho 17 thì 10x+y chia hết cho 17 .
Giúp ik mn
#)Giải :
Ta có : \(2\left(10x+y\right)-\left(3x+2y\right)=20x+2y-3x-2y=17a⋮17\)
\(\Rightarrow2\left(10x+y\right)-\left(3x+2y\right)⋮17\)
\(\Rightarrow2\left(10x+y\right)⋮17\)
Mà (2;10) = 1 \(\Rightarrow10x+y⋮17\left(đpcm\right)\)