Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hà Mai Khanh
Xem chi tiết
Lê Song Phương
23 tháng 6 2023 lúc 8:06

 Để ý rằng \(p^2-4=\left(p-2\right)\left(p+2\right)\), hơn nữa \(p-2< p+2\) nên để \(p^2-4\) là số nguyên tố thì \(p-2=1\) và \(p+2\) là số nguyên tố \(\Leftrightarrow p=3\).

 Thử lại, ta thấy rõ rằng \(3^2+4=13\) và \(3^2-4=5\) đều là các số nguyên tố. Vậy, \(p=3\) 

Minh Thư Trần
Xem chi tiết
Trương Ngọc Linh
5 tháng 7 2023 lúc 13:58

Gọi số cần tìm là a ( a ∈ N)

Ta có:

a chia 5 dư 1

⇒ a+4 chia hết cho 5

a chia 7 dư 3

⇒ a+4 chia hết cho 7

Mà (5,7) = 1

⇒ a+4 chia hết cho 35

Vì a là số tự nhiên nhỏ nhất 

⇒a+4 = 35

⇒a=35-4

⇒a=31

Vậy số tự nhiên cần tìm là 31

Nguyễn Đức Trí
5 tháng 7 2023 lúc 15:14

          1)Gọi số x là số tự nhiên nhỏ nhất cần tìm, theo đề bài ta có :

x=5a+1 ; x=7b+3

Nên 5a+1=7b+3

5a-7b=2

Ta thấy 5.6-7.4=2

Nên a=6; b=4

Vậy x=31

2) Theo đề bài : p2 + 4 và  p2 - 4 đều là số nguyên tố

⇒ (p2 + 4) và (p2 - 4) ⋮ 1 và chính nó

 ⇒ (p2 + 4) và (p2 - 4) ϵ {1;2;3;5;7;11;13...}

Ta thấy khi (p2 + 4) = 13 và (p2 - 4) = 5 thì p=3

Vậy p=3

Minh Thư Trần
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 7 2023 lúc 12:35

1: Gọi số cần tìm là a

Theo đề, ta có: a-1 chia hết cho 5 và a-3 chia hết cho 7

mà a nhỏ nhất

nên a=31

2: TH1: p=3

=>p^2+4=13 và p^2-4=5

=>NHận

Th2: p=3k+1

p^2-4=(3k+1-2)(3k+1+2)

=3(k+1)(3k-1) 

=>Loại

TH3: p=3k+2

=>p^2-4=9k^2+12k+4-4

=9k^2+12k=3(3k^2+4k) 

=>Loại

Họ hàng của abcdefghijkl...
Xem chi tiết
Đặng Yến Ngọc
1 tháng 11 2018 lúc 21:19

p1=2

p2=3

p3=5

p4=7

p1+p2+p3+p4=2+3+5+7=17 là số nguyên tố

đúng thì tk nha

zZz Cool Kid_new zZz
1 tháng 11 2018 lúc 21:26

Với p1=2 =>p2=3,p3=5,p4=7(do p1<p2<p3<p4)                (1)

Với p1>2 suy ra tất cả chúng đều lẻ.Suy ra tổng của chúng là số chẵn lớn hơn 2 nên chia hết cho 2 hay là hợp số

Suy ra chúgn lần lượt là.........(1)

zZz Cool Kid_new zZz
1 tháng 11 2018 lúc 21:28

mik thiếu chỗ tổng 3 số như Đặng Yến Ngọc nhsa

Trần Vũ Việt Tùng
Xem chi tiết
Dino
10 tháng 5 2023 lúc 9:20

Ta cần phải có số nguyên tố p sao cho p2+4 và p2-4 đều là số nguyên tố là 3. Cách giải thích như sau:

Xét p=2 ⇒ 22+4= 8 (hợp số loại) Xét p=3 ⇒ 32+4= 13,32−4 = 5 (số nguyên tố thỏa) Xét p>3 ⇒ p có dạng 3k+1 hoặc 3k+2 Xét p có dạng 3k+1 ⇒p2−4 = (3k+1)2−4= 9k2+3k+1−4= 9k2+3k−3 = 3(3k2+k−1)⋮3 (hợp số loại) Xét p có dạng 3k+2 ⇒p2−4 = (3k+2)2−4= 9k2+6k+4−4= 9k2+6k =3(3k2+2k)⋮3 (hợp số loại)

Vậy p=3 là số nguyên tố duy nhất thỏa điều kiện .

--- Học tốt nhé! ----

Ngô Bá Thành
Xem chi tiết
ILoveMath
15 tháng 2 2022 lúc 20:41

\(2xy+x-2y=4\\ \Rightarrow x\left(2y+1\right)-2y-1=4-1\\ \Rightarrow x\left(2y+1\right)-\left(2y+1\right)=3\\ \Rightarrow\left(x-1\right)\left(2y+1\right)=3\)

Vì \(x,y\in Z\Rightarrow\left\{{}\begin{matrix}x-1,2y+1\in Z\\x-1,2y+1\inƯ\left(3\right)\end{matrix}\right.\)

Ta có bảng:

x-1-1-313
2y+1-3-131
x0-224
y-2-110

Vậy \(\left(x,y\right)\in\left\{\left(0;-2\right);\left(-2;-1\right);\left(2;1\right);\left(4;0\right)\right\}\)

 

Nguyên Phạm
Xem chi tiết
Vũ Phương Nhi
Xem chi tiết