Cho tam giác ABC có AB=AC. Tia phân giác góc A cắt BC ở H. CMR:
a/BH=BC
b/BH vuông góc với BC
Cho tam giác ABC có AB=AC. Tia phân giác góc A cắt BC ở H. CMR:
a/BH=BC
b/BH vuông góc với BC
cho tam giác ABC có A=90 độ ,AB=3cm,AC=4cm
a,tính BC
b,so sánh góc B,C
c,kẻ tia phân giác góc C cắt AB tại I
từ I kẻ IH vuông góc với BC (H thuộc BC),AC cắt IH tại tại K chứng minh AK=BH
a, Áp dụng định lý Pytago :
ta có : \(BC^2=AC^2+AB^2\)
\(BC^2=3^2+4^2\)
\(BC^2=9+16=25=5^2\)
=>\(BC=5^{ }\)
b, Áp dụng định lý trong một tam giác gốc đối diện với cạnh lớn hơn là góc lớn hơn
Có : Trong tam giác ABC có BC=5, AC=4, AB=3
=> góc A > góc B > góc C
Vậy góc B > góc C
c, Xét △BIC và △AIC có
góc \(C_1=C_2\)
BAC = KHC = 90 độ
IC cạnh chung
=> △HIC = △AIC
Xét △HIB và △KIA có
IH = IA (cmt)
\(I_1=I_2\)( đối đỉnh)
Góc A = góc H = 90 độ
=> △HIB = △AIK
Vậy cạnh AK = BH
cho tam giác ABC vuông tại B đường cao BH cho AH=9 cm, HC=16 cm
a) tính BH,AB,BC
b)từ H kẻ HE vuông góc BC .chứng minh BE.BC=HA.HC
c)trung tuyến BM của tam giác ABC .Tính góc BMH
d0 Tia phân giác góc ABC cắt AC tại D. CM: 1/BA + 1/BC = (căn 2)/BD
b: Xét ΔBAC vuông tại B có BH là đường cao
nên \(HA\cdot HC=BH^2\left(1\right)\)
Xét ΔBHC vuông tại H có HE là đường cao
nên \(BE\cdot BC=BH^2\left(2\right)\)
Từ (1) và (2) suy ra \(HA\cdot HC=BE\cdot BC\)
cho tam giác cân ABC có ABC : AB=AC=10cm , BC=12cm , gọi AH là tia phân giác góc A (H thuộc BC)
a. CM BH=HC và AH vuông góc BC
b. Tính độ dài AH
c. Kẻ HD vuông góc AB (D thuộc AB) HE vuông góc AC (E thuộc AC).Hỏi tam giác DHE là tam giác gì ?
d. CM DE//BC
Giúp mình với ạ 😭✨
a: ΔABC cân tại A có AH là phân giác
nên H là trung điểm của BC
ΔABC cân tại A có AH là trung tuyến
nên AH vuông góc BC
b: BH=CH=12/2=6cm
AH=căn AB^2-AH^2=8cm
c: Xét ΔADH vuông tại D và ΔAEH vuông tại E có
AH chung
góc DAH=góc EAH
=>ΔADH=ΔAEH
=>AD=AE và HD=HE
=>ΔHDE cân tại H
d: Xét ΔABC có AD/AB=AE/AC
nên DE//BC
cho tam giác ABC vuông tại A . Kẻ BD là tia phân giác ( D thuộc AC)
a) Biết AB = 4cm ; AC = 3cm . Tính BC
b)Qua D kẻ DH vuông góc BC( H thuộc BC ).Chứng minh BH = AH
c) Kẻ AM vuông góc BC tại M ( M thuộc BC) . Chứng minh AH là tia phân giác của góc MAC
D) Gọi K là giao điểm của AM = BD : C/m tam giác ADK cân
a: BC=5cm
b: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có
BD chung
\(\widehat{ABD}=\widehat{HBD}\)
Do đó: ΔBAD=ΔBHD
Suy ra: BA=BH
c: \(\widehat{MAH}+\widehat{BHA}=90^0\)
\(\widehat{CAH}+\widehat{BAH}=90^0\)
mà \(\widehat{BHA}=\widehat{BAH}\)
nên \(\widehat{MAH}=\widehat{CAH}\)
hay AH là tia phân giác của góc MAC
mọi người giúp mình câu d với ạ ,mình sắp thi rùi ạ
cho tam giác ABC vuông tại A . Kẻ BD là tia phân giác ( D thuộc AC)
a) Biết AB = 4cm ; AC = 3cm . Tính BC
b)Qua D kẻ DH vuông góc BC( H thuộc BC ).Chứng minh BH = AH
c) Kẻ AM vuông góc BC tại M ( M thuộc BC) . Chứng minh AH là tia phân giác của góc MAC
D) Gọi K là giao điểm của AM = BD : C/m tam giác ADK cân
( mn giúp mình câu d vs ạ mình sắp thi rùi ạ )
Tham khảo
a: BC=5cm
b: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có
BD chung
ˆABD=ˆHBD
Do đó: ΔBAD=ΔBHD
Suy ra: BA=BH
c: ˆMAH+ˆBHA=900
ˆCAH+ˆBAH=900
mà ˆBHA=ˆBAH
nên ˆMAH=ˆCAH
hay AH là tia phân giác của góc MAC
Cho tam giác ABC vuông tại A . Tia phân giác góc B cắt AC tại D , tia phân giác góc C cắt AB tại E kẻ DH vuông góc với BC tại H, kẻ EK vuông góc với BC tại K a) Chứng minh BA=BH b) BD vuông góc với AH c) Chứng minh AB+AC=BC+HK d) Tính góc HAK
a: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có
BD chung
\(\widehat{ABD}=\widehat{HBD}\)
Do đó: ΔBAD=ΔBHD
Suy ra: BA=BH
b: Ta có: ΔBAD=ΔBHD
nên DA=DH
hay D nằm trên đường trung trực của AH(1)
Ta có: BA=BH
nên B nằm trên đường trung trực của AH(2)
Từ (1) và (2) suy ra BD là đường trung trực của AH
hay BD⊥AH
Mình chỉ làm câu c, d thôi nha ( vì câu a, b bạn Nguyễn Lê Phước Thịnh làm rồi)
c) Xét tam giác ECK và tam giác ECA có:
EKC=EAC=90
EC cạnh chung
ECK=ECA ( vì CE là p/g của ABC)
=>Tam giác ECK=Tam giác ECA ( ch-gn)
=>CK=CA( 2 cạnh tương ứng)
Mà AB=HB( chứng minh a)
=>CK+BH=CA+AB
=>CH+KH+BK+HK=AC+AB
=>(BK+KH+CH)+HK=AC+AB
=>BC+HK=AB+AC (ĐPCM)
d) Ta có: \(\left\{{}\begin{matrix}CK=CA\left(theo.c\right)\\BA=BH\left(theo.a\right)\end{matrix}\right.\)=>Tam giác ACK cân tại C và tam giác ABH cân tại B
=>\(\left\{{}\begin{matrix}CAK=CKA=\dfrac{180-ACB}{2}\\BAH=BHA=\dfrac{180-ABC}{2}\end{matrix}\right.\)
Có: BAH+CAK=BAK+HAK+HAC+HAK=BAK+2HAK+HAC=\(\dfrac{180-ABC}{2}+\dfrac{180-ACB}{2}\)=\(\dfrac{360-\left(ABC+ACB\right)}{2}\)
=\(\dfrac{360-90}{2}=135\)
=>BAK+2HAK+HAC=135
Mà BAK+HAC=BAC-HAK=90-HAK
=>90-HAK+2HAK=135
=>90+HAK=135
=>HAK=45
Cho tam giác ABC có góc A bằng góc B. CD là tia phân giác của góc ACB (D thuộc AB). Gọi m là đường thẳng đi qua B và vuông góc với BC. Tia phân giác của góc DCB cắt AB ở M và cắt m ở N. Kẻ BH vuông góc với MN (H thuộc MN). Chứng minh BH là tia phân giác của góc MBN
1, Cho tam giác ABC vuông cân tại A . Gọi M là trung điểm BC , D là đoạn thẳng BM ( D khác B và M ) . Kẻ các đường thẳng BH , CI lần lượt vuông góc với AD tai H và I . Cmr
a, góc BAM=góc ACM và BH và AI
b, Tam giác MHI vuông cân
c, Cho tam giác ABC có góc A =90 độ Kẻ AH vuông góc với BC (H thuộc BC ) . Tia phân giác của góc HAC cắt cạch BC ở điểm D và tia phân giác của góc HAB cắt cạch BC ở E . Chứng minh AB+AC = BC +DE