với x>=1.chứng minh \(\frac{x}{\sqrt{x-1}}\) >=2
B=\(\left(\frac{x\sqrt{x}}{x\text{+}\sqrt{x}\text{+}1}-\frac{1}{x\text{+}\sqrt{x}\text{+}1}\right):\frac{2}{\sqrt{x}\text{+}1}\)
Chứng minh A<0 với mọi 0<x<1
Cho biểu thức \(A=\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{2}{\sqrt{x}+1}-\frac{2}{x-1}=2\) với \(x\ge0,x\ne1\).Chứng minh A<1
bạn xem lại đề coi ?
đây là đề bài lấy từ đề thi huyện năm 2015-2016 của trường minh nha
oh . bạn không thấy à
rõ ràng bạn ghi A = 2 mà chứng minh A < 1
Cho biểu thức A = \(\left\{\frac{x+2}{x\sqrt{x}-1}+\frac{\sqrt{x}+2}{x\sqrt{x}+1}+\frac{1}{1-\sqrt{x}}\right\}:\frac{\sqrt{x}+1}{x+\sqrt{x}+1}\)
1. Rút gọn biểu thức
2. Chứng minh rằng 0<A<2
GIÚP MÌNH VỚI Ạ !
Cho hai biểu thức $A=\frac{4 \sqrt{x}}{\sqrt{x}-1} ; B=\frac{1}{\sqrt{x}+1}+\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{2}{x-1}$ với $x \geq 0 ; x \neq 1$
1. Tính giá trị biểu thức $A$ khi $x=49$;
2. Chứng minh $B=\frac{\sqrt{x}+1}{\sqrt{x}-1}$;
3. Cho $P=A: B$. Tìm giá trị của $x$ để $P(\sqrt{x}+1)=x+4+\sqrt{x-4}$.
Em gửi ảnh trên ạ !!!!!
a, Ta có \(x=49\Rightarrow\sqrt{x}=7\)
Thay vào biểu thức A ta được :
\(A=\frac{7.4}{7-1}=\frac{28}{6}=\frac{14}{3}\)
b, Với \(x\ge0;x\ne1\)
\(B=\frac{1}{\sqrt{x}+1}+\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{2}{x-1}=\frac{\sqrt{x}-1+x+\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{x+2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{\sqrt{x}+1}{\sqrt{x}-1}\)( đpcm )
Cho biểu thức: P = \(\left(\frac{2}{\sqrt{x}-1}+\frac{\sqrt{x}}{\sqrt{x}+1}\right).\frac{\sqrt{x}}{x+\sqrt{x}+2}\) với x >= 0 và x khác 1
a) Chứng minh rằng P = \(\frac{\sqrt{x}}{x-1}\)
b) Với giá trị nào của x thì P = \(\frac{1}{2}\)
chứng minh đẳng thức
\(\left(\frac{1+x\sqrt{x}}{1+\sqrt{x}}-\sqrt{x}\right)\left(\frac{1-x\sqrt{x}}{1-\sqrt{x}}+\sqrt{x}\right)=\left(1-x\right)^2\)
với x lớn hơn hoặc bằng 0 và x khác 1
Cho biểu thức: A = \(\left(\frac{x+2}{x\sqrt{x}-1}+\frac{\sqrt{x}}{x+\sqrt{x}+1}+\frac{1}{1-\sqrt{x}}\right):\frac{\sqrt{x}-1}{2}\) với \(a\ge0;a\ne4\)
a, Rút gọn A
b, Chứng minh rằng: 0 < A < 2
a) A= \(\left(\frac{x+2}{x\sqrt{x}-1}+\frac{\sqrt{x}}{x+\sqrt{x}+1}+\frac{1}{1-\sqrt{x}}\right):\left(\frac{\sqrt{x}-1}{2}\right)\) (x ≥ 0; x ≠ 4)
= \(\left(\frac{x+2}{\left(\sqrt{x}-1\right)\cdot\left(x+\sqrt{x}+1\right)}+\frac{\left(\sqrt{x}-1\right)\cdot\sqrt{x}}{\left(\sqrt{x}-1\right)\cdot\left(x+\sqrt{x}+1\right)}-\frac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\cdot\left(x+\sqrt{x}+1\right)}\right):\frac{\sqrt{x}-1}{2}\)
=\(\left(\frac{x+2+x-\sqrt{x}-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\cdot\left(x+\sqrt{x}+1\right)}\right)\cdot\frac{2}{\sqrt{x}-1}\)
=\(\left(\frac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\cdot\left(x+\sqrt{x}+1\right)}\right)\cdot\frac{2}{\sqrt{x}-1}\)
= \(\frac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\cdot\left(x+\sqrt{x}+1\right)}\cdot\frac{2}{\sqrt{x}-1}\)
=\(\frac{2}{x+\sqrt{x}+1}\)
b) Ta có: x ≥ 0 ⇒ \(\sqrt{x}\) ≥ 0
⇒x+\(\sqrt{x}\)+1 ≥ 1 > 0
mà 2 > 0
⇒ A > 0 (1)
Ta có:
\(x+\sqrt{x}+1\) ≥ 1
⇒ \(\frac{1}{x+\sqrt{x}+1}\) ≤ 1
⇒\(\frac{2}{x+\sqrt{x}+1}\) ≤ 2
⇒A ≤ 2 (2)
Từ (1) và (2) => 0 < A ≤ 2
a) Rút gọn biểu thức sau A=\(\sqrt{3+2\sqrt{2}}-\frac{1}{1+\sqrt{2}}\)
b)Chứng minh rằng:\(\left(\frac{\sqrt{x}}{\sqrt{x}+3}+\frac{3}{\sqrt{x}-3}\right).\frac{\sqrt{x}+3}{x+9}=\frac{1}{\sqrt{x}-3}\)với x≥0 và x ≠ 9
a) Ta có: \(A=\sqrt{3+2\sqrt{2}}-\frac{1}{1+\sqrt{2}}\)
\(=\sqrt{1+2\cdot1\cdot\sqrt{2}+2}-\frac{1}{1+\sqrt{2}}\)
\(=\sqrt{\left(1+\sqrt{2}\right)^2}-\frac{1}{1+\sqrt{2}}\)
\(=1+\sqrt{2}-\frac{1}{1+\sqrt{2}}\)
\(=\frac{\left(1+\sqrt{2}\right)^2}{1+\sqrt{2}}-\frac{1}{1+\sqrt{2}}\)
\(=\frac{1+2\sqrt{2}+2-1}{1+\sqrt{2}}\)
\(=\frac{2\sqrt{2}+2}{1+\sqrt{2}}\)
\(=\frac{2\left(\sqrt{2}+1\right)}{\sqrt{2}+1}=2\)
b) Ta có: \(\left(\frac{\sqrt{x}}{\sqrt{x}+3}+\frac{3}{\sqrt{x}-3}\right)\cdot\frac{\sqrt{x}+3}{x+9}\)
\(=\left(\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\frac{3\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\right)\cdot\frac{1}{\sqrt{x}-3}\)
\(=\frac{x-3\sqrt{x}+3\sqrt{x}+9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\cdot\frac{1}{\sqrt{x}-3}\)
\(=\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\cdot\frac{1}{\sqrt{x}-3}\)
\(=\frac{1}{\sqrt{x}-3}\)(đpcm)
Dạng 1. Đưa về bất phương trình
Bài 1. Cho B = \(\frac{2\sqrt{x}+1}{\sqrt{x}++1}\) với x ≥ 0. Tìm x để B \(< \frac{3}{2}\)
Bài 2. Cho C = \(\frac{2}{\sqrt{x}-1}\) với x ≥ 0, x ≠ 1. Tìm x để C ≤ 1
Bài 3. Cho D = \(\frac{2\sqrt{x}-4}{x}\) với x > 0. Tìm x để D ≥ \(\frac{1}{4}\)
Bài 4. Cho P = \(\frac{\sqrt{x}-1}{\sqrt{x}+1}\) với x ≥ 0. a) Tìm x để \(\left|P\right|=P\) ; b) Tìm x để \(\left|P\right|=-P\)
Bài 5. Cho Q = \(\frac{3\sqrt{x}}{\sqrt{x}+3}\) với x ≥ 0. Tìm x để :
a) Q2 ≥ Q ; b) Q2 < Q ; c) Q2 - 2Q < 0 ; d) Q < \(\sqrt{Q}\)
Dạng 2. Chứng minh
Bài 1. Cho A = \(\frac{\sqrt{x}}{x+\sqrt{x}+1}\) với x ≥ 0, x ≠ 1. Chứng minh A < \(\frac{1}{3}\)
Bài 2. Cho B = \(\frac{\sqrt{x}+1}{\sqrt{x}+3}\) với x > 0, x ≠ 9. Chứng minh B < \(\frac{1}{3}\)
Bài 3. Cho C = \(\frac{3\sqrt{x}+2}{x+\sqrt{x}+3}\) với x > 0. Chứng minh C ≤ 1.
Cho biểu thức A =\(\frac{x+\sqrt{x}+1}{\sqrt{x}+2}\) và B =\(\frac{2\sqrt{x}}{\sqrt{x}-1}-\frac{x-\sqrt{x}+2}{x-\sqrt{x}}\) với x > 0; x ≠ 1
1) Tính giá trị của A khi x = 16
2) Chứng minh rằng B = \(\frac{\sqrt{x}+2}{\sqrt{x}}\)
3) Cho P = A.B. So sánh P với 3.
1) Thay x=16 vào A ta có:
A=\(\frac{16+\sqrt{16}+1}{\sqrt{16}+2}\)
A=\(\frac{16+4+1}{4+2}\)
A=\(\frac{21}{6}=\frac{7}{2}\)
\(2,\frac{2\sqrt{x}}{\sqrt{x}-1}-\frac{x-\sqrt{x}+2}{x-\sqrt{x}}\)
\(=\frac{2\sqrt{x}}{\sqrt{x}-1}-\frac{x-\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(=\frac{2x-x+\sqrt{x}-2}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(=\frac{x+\sqrt{x}-2}{\sqrt{x}\left(\sqrt{x}-1\right)}=\frac{x-\sqrt{x}+2\sqrt{x}-2}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(=\frac{\sqrt{x}\left(\sqrt{x}-1\right)+2\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}=\frac{\sqrt{x}+2}{\sqrt{x}}\)\(\left(đpcm\right)\)
\(3,P=A.B=\frac{x+\sqrt{x}+1}{\sqrt{x}+2}.\frac{\sqrt{x}+2}{\sqrt{x}}=\frac{x+\sqrt{x}+1}{\sqrt{x}}\)
Ta thấy \(\left(\sqrt{x}-1\right)^2>0\Rightarrow x-2\sqrt{x}+1>0\)
\(\Rightarrow x+\sqrt{x}+1>3\sqrt{x}\)
\(\Rightarrow\frac{x+\sqrt{x}+1}{\sqrt{x}}>\frac{3\sqrt{x}}{\sqrt{x}}\Rightarrow\frac{x+\sqrt{x}+1}{\sqrt{x}}>3\left(đpcm\right)\)