giải phương trình: a, \(\left(x+4\right)^4+\left(x+10\right)^4=32\)
b, \(x^2+\sqrt{x+2004}=2004\)
Giải phương trình
\(x=\left(2004+\sqrt{x}\right)\left(1-\sqrt{1-\sqrt{x}}\right)^2\)
Tiếp: \(a=1\Rightarrow\sqrt{1-\sqrt{x}}=1\Leftrightarrow x=0\) (thỏa mãn)
\(a=\frac{\sqrt{4009}-1}{2}\Rightarrow\sqrt{1-\sqrt{x}}=\frac{\sqrt{4009}-1}{2}\Leftrightarrow\sqrt{x}=1-\left(\frac{\sqrt{4009}-1}{2}\right)^2\)
Ta có: \(\frac{\sqrt{4009}-1}{2}>1\Rightarrow\left(\frac{\sqrt{4009}-1}{2}\right)^2>1\Rightarrow1-\left(\frac{\sqrt{4009}-1}{2}\right)^2<0\) (vô lí)
Vậy nghiệm duy nhất của Pt là x = 0
Giải phương trình sau :
\(x=\left(2004+\sqrt{x}\right)\left(1-\sqrt{1-\sqrt{x}}\right)^2\)
Điều kiện: \(0\le x\le1\)
Đặt \(\sqrt{1-\sqrt{x}}=a\left(0\le a\le1\right)\)
\(\Rightarrow1-\sqrt{x}=a^2\)
\(\Leftrightarrow x=a^4-2a^2+1\)
Thế vào bài toán ta được
\(a^4-2a^2+1=\left(2005-a^2\right)\left(1-a\right)^2\)
\(\Leftrightarrow a^4-a^3-1003a^2+2005a-1002=0\)
\(\Leftrightarrow\left(a-1\right)^2\left(a^2+a-1002\right)=0\)
Vì \(0\le a\le1\)nên \(a^2+a-1002< 0\)
\(\Rightarrow a=1\)
\(\Leftrightarrow\sqrt{1-\sqrt{x}}=1\)
\(\Leftrightarrow x=0\)
giải phương trình :
a, \(\left(x+9\right)\left(2-\sqrt{9+2x}\right)^2=2x^2\)
b,\(\left(2x+10\right)\left(1-\sqrt{3+2x}\right)^2=4\left(x+1\right)^2\)
a. Đề bài sai, phương trình không giải được
b.
ĐKXĐ: \(x\ge-\dfrac{2}{3}\)
\(\left(2x+10\right)\left(\dfrac{1-\left(3+2x\right)}{1+\sqrt{3+2x}}\right)^2=4\left(x+1\right)^2\)
\(\Leftrightarrow\dfrac{\left(2x+10\right)4.\left(x+1\right)^2}{\left(1+\sqrt{3+2x}\right)^2}=4\left(x+1\right)^2\)
\(\Leftrightarrow\left[{}\begin{matrix}4\left(x+1\right)^2=0\Rightarrow x=-1\\2x+10=\left(1+\sqrt{3+2x}\right)^2\left(1\right)\end{matrix}\right.\)
Xét (1)
\(\Leftrightarrow2x+10=2x+4+2\sqrt{2x+3}\)
\(\Leftrightarrow\sqrt{2x+3}=3\)
\(\Leftrightarrow x=3\)
[Ôn thi vào 10]
Bài 1:
a. Tính \(A=\sqrt{8}+\sqrt{18}-\sqrt{32}\)
b. Rút gọn biểu thức \(B=\sqrt{9-4\sqrt{5}}-\sqrt{5}\)
Bài 2:
a. Giải hệ phương trình: \(\left\{{}\begin{matrix}2x-3y=4\\x+3y=2\end{matrix}\right.\)
b. Giải phương trình: \(\dfrac{10}{x^2-4}+\dfrac{1}{2-x}=1\)
Bài 3:
Một đội thợ mỏ phải khai thác 260 tấn than trong một thời hạn nhất định. Trên thực tế, mỗi ngày đội đều khai thác vượt định mức 3 tấn, do đó họ đã khai thác được 261 tấn than và xong trước thời hạn một ngày.
Hỏi theo kế hoạch mỗi ngày đội thợ phải khai thác bao nhiêu tấn than?
Bài 1:
a) \(A=\sqrt{8}+\sqrt{18}-\sqrt{32}\)
\(=2\sqrt{2}+3\sqrt{2}-4\sqrt{2}\)
\(=\sqrt{2}\)
b) \(B=\sqrt{9-4\sqrt{5}}-\sqrt{5}\)
\(=\sqrt{4-4\sqrt{5}+5}-\sqrt{5}\)
\(=\sqrt{\left(2-\sqrt{5}\right)^2}-\sqrt{5}\)
\(=\left|2-\sqrt{5}\right|-\sqrt{5}\)
\(=\sqrt{5}-2-\sqrt{5}\)
\(=-2\)
Bài 2:
a) \(\left\{{}\begin{matrix}2x-3y=4\\x+3y=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}3x=6\\x+3y=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\2+3y=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=0\end{matrix}\right.\)
Vậy phương trình có nghiệm là: \(\left\{{}\begin{matrix}x=2\\y=0\end{matrix}\right.\)
b) ĐKXĐ: \(x\ne\pm2\)
Với \(x\ne\pm2\), ta có:
\(\dfrac{10}{x^2-4}+\dfrac{1}{2-x}=1\)
\(\Leftrightarrow\dfrac{10}{\left(x-2\right)\left(x+2\right)}-\dfrac{1}{x-2}=1\)
\(\Leftrightarrow\dfrac{10-x-2}{x^2-4}=1\)
\(\Leftrightarrow\dfrac{8-x}{x^2-4}=1\)
\(\Rightarrow x^2-4=8-x\)
\(\Leftrightarrow x^2+x-12=0\)
\(\Leftrightarrow x^2-3x+4x-12=0\)
\(\Leftrightarrow x\left(x-3\right)+4\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+4=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-4\end{matrix}\right.\) (TM)
Vậy phương trình có tập nghiệm là: S ={3; -4}
Gọi số tấn than mỗi ngày đội thợ phải khai thác theo kế hoạch là: x(tấn). 0 < x <260
Số tấn than đã khai thác thực tế trong mỗi ngày là: x + 3 (tấn)
Số ngày mà đội thợ khai thác 260 tấn trong kế hoạch là: \(\dfrac{260}{x}\) (ngày)
Số ngày mà đội thợ khai thác 261 tấn thực tế là: \(\dfrac{261}{x+3}\) (ngày)
Vì trên thực tế, mỗi ngày đội đều khai thác vượt định mức 3 tấn, do đó họ đã khai thác được 261 tấn than và xong trước thời hạn một ngày nên ta có phương trình:
\(\dfrac{261}{x+3}+1=\dfrac{260}{x}\)
\(\Leftrightarrow\dfrac{261+x+3}{x+3}=\dfrac{260}{x}\)
\(\Leftrightarrow\dfrac{264+x}{x+3}=\dfrac{260}{x}\)
\(\Rightarrow260\left(x+3\right)=x\left(264+x\right)\)
\(\Leftrightarrow260x+780=264x+x^2\)
\(\Leftrightarrow x^2+4x-780=0\)
\(\Leftrightarrow x^2-26x+30x-780=0\)
\(\Leftrightarrow x\left(x-26\right)+30\left(x-26\right)=0\)
\(\Leftrightarrow\left(x-26\right)\left(x+30\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-26=0\\x+30=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=26\left(TM\right)\\x=-30\left(loại\right)\end{matrix}\right.\)
Vậy số tấn than mỗi ngày đội thợ phải khai thác theo kế hoạch là: 26 tấn
Giải các phương trình sau:
a \(x^4-x^2-56=0\)
b \(\left(x-2\right)^4+\left(x+2\right)^4=32\)
c \(\left(x+3\right)^4+\left(x+5\right)^4=16\)
d \(\left(6-x\right)^4+\left(8-x\right)^4=80\)
a) \(x^4-x^2+\dfrac{1}{4}-\dfrac{225}{4}=0\\ \left(x^2-\dfrac{1}{2}\right)^2-\dfrac{15}{2}^2=0\\ \left(x+7\right)\left(x-8\right)=0\\ \left[{}\begin{matrix}x=8\\x=-7\end{matrix}\right.\)
Vậy x = 8 hoặc x = -7
a: Ta có: \(x^4-x^2-56=0\)
\(\Leftrightarrow x^4-8x^2+7x^2-56=0\)
\(\Leftrightarrow\left(x^2-8\right)\left(x^2+7\right)=0\)
\(\Leftrightarrow x^2-8=0\)
hay \(x\in\left\{2\sqrt{2};-2\sqrt{2}\right\}\)
Giải các phương trình sau: \(\left(\sqrt{x+5}-\sqrt{x+2}\right).\left(4+\sqrt{x^2+7x+10}\right)=6\)
Giải phương trình:
\(\sqrt{x-2}+\sqrt{y+2003}+\sqrt{x-2004}=\frac{1}{2}\left(x+y+z\right)\)
Giải phương trình:
1. \(\left(x^2+x\right)^2+4\left(x^2+x\right)^2=12\)
2. \(\frac{x+1}{2008}+\frac{x+2}{2007}+\frac{x+3}{2006}=\frac{x+4}{2005}+\frac{x+5}{2004}+\frac{x+6}{2003}\)
câu 2 :
\(\Leftrightarrow\)\(\frac{x+1}{2008}+\frac{x+2}{2007}+\frac{x+3}{2006}-\frac{x+4}{2005}-\frac{x+5}{2004}-\frac{x+6}{2003}\)=0
\(\Leftrightarrow\frac{x+2009}{2008}+\frac{x+2009}{2007}+\frac{x+2009}{2006}-\frac{x+2009}{2005}-\frac{x+2009}{2004}-\frac{x-2009}{2003}\)=0
\(\Leftrightarrow\left(x+2009\right)\left(\frac{1}{2008}+\frac{1}{2007}+\frac{1}{2006}-\frac{1}{2005}-\frac{1}{2004}-\frac{1}{2003}\right)\)
\(\Rightarrow x+2009=0\)
\(\Rightarrow x=-2009\)
gpt (đặt ẩn phụ)
10, \(x=\left(2004+\sqrt{x}\right)\left(\sqrt{1-\sqrt{x}}\right)^2\)
12, \(x^2+\sqrt[3]{x^4-x^2}=2x+1\).