phân tích đa thức thành nhân tu
a,x2 +3x -1
b,x2 +9x-10
c,5x2 -3x +2
d,x2 -13x +42
Phân tích các đa thức sau thành nhân tử:
a,x3+4x-5
b,x3-3x2+4
c,x3+2x2+3x+2
d,x2+2xy+y2+2x-2y-3
e,(x2+3x)2-2(x2+3x)-8
f,(x2+4x+10)2-7(x2+4x+11)+7
a) x3+4x-5 = x3-x2+x2+4x-5=(x3-x2)+(x2-x)+(5x-5)=x2(x-1)+x(x-1)+5(x-1)=(x2+x+5)(x-1)
b) x3-3x2+4=x3-2x2-x2+4=(x3-2x2)-(x2-4)=x2(x-2)-(x-2)(x+2)=(x2-x+2)(x-2)
c) x3+2x2+3x+2=x3+x2+x2+x+2x+2=(x3+x2)+(x2+x)+(2x+2)=x2(x+1)+x(x+1)+2(x+1)=(x2+x+2)(x+1)
d) bạn xem lại đề đúng ko
e) (x2+3x)2-2(x2+3x)-8=x4+6x3+9x2-2x2-6x-8=x4+6x3+7x2-6x-8=x4-x3+7x3-7x2+14x2-14x+8x-8=(x4-x3)+(7x3-7x2)+(14x2-14x)+(8x-8)=x3(x-1)+7x2(x-1)+14x(x-1)+8(x-1)=(x3+7x2+14x+8)(x-1)=(x3+x2+6x2+6x+8x+8)(x-1)=\(\left[\left(x^3+x^2\right)+\left(6x^2+6x\right)+\left(8x+8\right)\right]\left(x-1\right)\)\(=\left[x^2\left(x+1\right)+6x\left(x+1\right)+8\left(x+1\right)\right]\left(x-1\right)\)\(=\left(x^2+6x+8\right)\left(x+1\right)\left(x-1\right)\)\(=\left(x^2+2x+4x+8\right)\left(x+1\right)\left(x-1\right)\)\(=\left[\left(x^2+2x\right)+\left(4x+8\right)\right]\left(x+1\right)\left(x-1\right)\)\(=\left[x\left(x+2\right)+4\left(x+2\right)\right]\left(x+1\right)\left(x-1\right)\)=\(\left(x-1\right)\left(x+1\right)\left(x+2\right)\left(x+4\right)\)
f) (x2+4x+10)2-7(x2+4x+11)+7=(x2+4x+10)2-\(\left[7\left(x^2+4x+11\right)-7\right]\)\(=\left(x^2+4x+10\right)^2-7\left(x^2+4x+10\right)\)\(=\left(x^2+4x+10\right)\left(x^2+4x+3\right)\)
a) Ta có: \(x^3+4x-5\)
\(=x^3-x+5x-5\)
\(=x\left(x-1\right)\left(x+1\right)+5\left(x-1\right)\)
\(=\left(x-1\right)\left(x^2+x+5\right)\)
b) Ta có: \(x^3-3x^2+4\)
\(=x^3+x^2-4x^2+4\)
\(=x^2\left(x+1\right)-4\left(x-1\right)\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2-4x+4\right)\)
\(=\left(x+1\right)\cdot\left(x-2\right)^2\)
c) Ta có: \(x^3+2x^2+3x+2\)
\(=x^3+x^2+x^2+x+2x+2\)
\(=x^2\left(x+1\right)+x\left(x+1\right)+2\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2+x+2\right)\)
d) Ta có: \(x^2+2xy+y^2+2x+2y-3\)
\(=\left(x+y\right)^2+2\left(x+y\right)-3\)
\(=\left(x+y\right)^2+3\left(x+y\right)-\left(x+y\right)-3\)
\(=\left(x+y\right)\left(x+y+3\right)-\left(x+y+3\right)\)
\(=\left(x+y+3\right)\left(x+y-1\right)\)
e) Ta có: \(\left(x^2+3x\right)^2-2\left(x^2+3x\right)-8\)
\(=\left(x^2+3x\right)^2-4\left(x^2+3x\right)+2\left(x^2+3x\right)-8\)
\(=\left(x^2+3x\right)\left(x^2+3x-4\right)+2\left(x^2+3x-4\right)\)
\(=\left(x^2+3x-4\right)\left(x^2+3x+2\right)\)
\(=\left(x+4\right)\left(x-1\right)\left(x+1\right)\left(x+2\right)\)
f) Ta có: \(\left(x^2+4x+10\right)^2-7\left(x^2+4x+11\right)+7\)
\(=\left(x^2+4x+10\right)^2-7\left(x^2+4x+10\right)-7+7\)
\(=\left(x^2+4x+10\right)\left(x^2+4x+10-7\right)\)
\(=\left(x^2+4x+3\right)\left(x^2+4x+10\right)\)
\(=\left(x+1\right)\left(x+3\right)\left(x^2+4x+10\right)\)
phân tích đa thức thành nhân tử :
a) x2-x.y-3x+3y
b)5x2+5xy-x-y
c)x2-2xy+y2-z2
a: Ta có: \(x^2-xy-3x+3y\)
\(=x\left(x-y\right)-3\left(x-y\right)\)
\(=\left(x-y\right)\left(x-3\right)\)
b: Ta có: \(5x^2+5xy-x-y\)
\(=5x\left(x+y\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(5x-1\right)\)
c: Ta có: \(x^2-2xy+y^2-z^2\)
\(=\left(x-y\right)^2-z^2\)
\(=\left(x-y-z\right)\left(x-y+z\right)\)
1.Phân tích đa thức sau thành nhân tử
a,x2+4x-3
b,16x-5x2-3
c,2x2+3x-5
d,2x2+3x-5
b) \(16x-5x^2-3=5x\left(3-x\right)-\left(3-x\right)=\left(3-x\right)\left(5x-1\right)\)
c) \(2x^2+3x-5=2x\left(x-1\right)+5\left(x-1\right)=\left(x-1\right)\left(2x+5\right)\)
d) \(2x^2+3x-5=2x\left(x-1\right)+5\left(x-1\right)=\left(x-1\right)\left(2x+5\right)\)
Phân tích đa thức thành nhân tử:
a) x 2 -3x + 2; b) 4 x 2 - 36x + 56;
c) 2 x 2 + 5x + 2; d)2 x 2 -9x + 7;
e) 4 x 2 - 4x - 9 y 2 + 12y - 3; g) x 4 - 2 x 3 -4 x 2 + 4x-3;
h) x 3 -x +3 x 2 y + 3x y 2 + y 3 -y.
a) (x - 1)(x - 2). b) 4(x - 2)(x - 7).
c) (x + 2)(2x +1). d) (x - l)(2x - 7).
e) (2x + 3y - 3)(2x - 3y +1). g) (x - 3)( x 3 + x 2 - x +1).
h) (x + y)(x + y-l)(x + y + l).
bài 1 phân tích các đa thức sau thành nhân tử
a) x2 + 4x +3 b) 16x - 5x2 - 3 c) 2x2 + 7x + 5
d) 2x2 + 3x -5 e) x3 - 3x2 + 1 - 3x f ) x2 - 4x - 5
g) (a2 + 1 )2 - 4a2 h) x3 - 3x2 - 4x + 12 i) x4 + x3 + x + 1
k) x4 - x3 - x2 + 1 l ) (2x + 1 )2 - ( x - 1 )
\(a,=\left(x+1\right)\left(x+3\right)\\ b,=-5x^2+15x+x-3=\left(x-3\right)\left(1-5x\right)\\ c,=2x^2+2x+5x+5=\left(2x+5\right)\left(x+1\right)\\ d,=2x^2-2x+5x-5=\left(x-1\right)\left(2x+5\right)\\ e,=x^3+x^2-4x^2-4x+x+1=\left(x+1\right)\left(x^2-4x+1\right)\\ f,=x^2+x-5x-5=\left(x+1\right)\left(x-5\right)\)
Phan tích đa thức thành nhân tử:
a) 3x+6y-12xy b) x2-2x+xy-2y
c) 5x2-5z2 d) x2-9+2x(x-3)
a/ \(3x+6y-12xy\)
\(=3\left(x+2y-4xy\right)\)
b/ \(x^2-2x+xy-2y\)
\(=x\left(x-2\right)+y\left(x-2\right)\)
\(=\left(x-2\right)\left(x+y\right)\)
c/ \(5x^2-5z^2\)
\(=5\left(x^2-z^2\right)\)
\(=5\left(x-z\right)\left(x+z\right)\)
d/ \(x^2-9+2x\left(x-3\right)\)
\(=\left(x-3\right)\left(x+3\right)+2x\left(x+3\right)\)
\(=\left(x+3\right)\left(3x-3\right)\)
\(=3\left(x+3\right)\left(x-3\right)\)
a) 3x+6y-12xy
=3(x+2y-4xy)
b)x²-2x+xy-2y=-2x-2y+(x²+xy)=-2(x+y)+x(x+y)=(x+y)(-2+x)
c)5x²-5z²=5(x²-z²)=5(x-z)(x+z)
d)x²-9+2x(x-3)=(x-3)(x+3)+2x(x-3)=(-3)((x+3)+2x)
Phân tích đa thức sau thành nhân tử:
a) 40x4-10x2
b) 16x4-20x2-y2-5y
c) 64a2-9b2-16a+1
d) 5x2+23x-10
e) 7x2-13xy-2y2
f) x4-23x2y2+y4
g) (x2+3x)2+7(x2+3x)+10
h) x(x+1)(x+2)(x+3)-8
a) \(40x^4-10x^2=10x^2\left(4x^2-1\right)=10x^2\left(2x-1\right)\left(2x+1\right)\)
b) \(16x^4-20x^2-y^2-5y=\left(4x^2-\dfrac{5}{2}\right)^2-\left(y-\dfrac{5}{2}\right)^2=\left(4x^2-\dfrac{5}{2}-y+\dfrac{5}{2}\right)\left(4x^2-\dfrac{5}{2}+y-\dfrac{5}{2}\right)=\left(4x^2-y\right)\left(4x^2+y-5\right)\)c)\(64a^2-9b^2-16a+1=\left(8a-1\right)^2-9b^2=\left(8a-1-3b\right)\left(8a-1+3b\right)\)d) \(5x^2+23x-10=5\left(x-\dfrac{2}{5}\right)\left(x+5\right)\)
a: \(40x^4-10x^2\)
\(=10x^2\left(4x^2-1\right)\)
\(=10x^2\cdot\left(2x-1\right)\left(2x+1\right)\)
b: \(16x^4-20x^2-y^2-5y\)
\(=\left(4x^2-y\right)\left(4x^2+y\right)-5\left(4x^2+y\right)\)
\(=\left(4x^2+y\right)\left(4x^2-y-5\right)\)
c: Ta có: \(64a^2-9b^2-16a+1\)
\(=\left(8a-1\right)^2-9b^2\)
\(=\left(8a-1-3b\right)\left(8a-1+3b\right)\)
d: Ta có: \(5x^2+23x-10\)
\(=5x^2+25x-2x-10\)
\(=\left(x+5\right)\left(5x-2\right)\)
phân tích đa thức sau thành nhân tử
a) 3ab - 6a2b b) x3 - 6x
c) x2 - y2 - 9x + 9y d) 5x2 + 10xy + 5y2
giải bài toán: cho tam giác MNP, NTlà phân giác của góc N biết MN=4cm, NT=10cm, MP=8cm:TínhTM, TP?
phân tích đa thức sau thành nhân tử
a) 3ab - 6a2b b) x3 - 6x
c) x2 - y2 - 9x + 9y d) 5x2 + 10xy + 5y2
a: \(3ab-6a^2b\)
\(=3ab\cdot1-3ab\cdot2a\)
=3ab(1-2a)
b: \(x^3-6x\)
\(=x\cdot x^2-x\cdot6\)
\(=x\left(x^2-6\right)\)
c: \(x^2-y^2-9x+9y\)
\(=\left(x^2-y^2\right)-\left(9x-9y\right)\)
\(=\left(x-y\right)\left(x+y\right)-9\left(x-y\right)\)
\(=\left(x-y\right)\left(x+y-9\right)\)
d: \(5x^2+10xy+5y^2\)
\(=5\left(x^2+2xy+y^2\right)\)
\(=5\left(x+y\right)^2\)
Bài 2: Phân tích các đa thức sau thành nhân tử
a, (x2 -4)(x2 -10)-72
b, (x+1)(x+2)(x+3)(x+4)+1
c, (x2 +3x+1)(x2+3x-3)-5
a) \(=x^4-14x^2+40-72=x^4-14x^2-32=\left(x-4\right)\left(x+4\right)\left(x^2+2\right)\)
b) \(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)+1=\left(x^2+5x\right)^2+2\left(x^2+5x\right)+1=\left(x^2+5x+1\right)^2\)
c) \(=x^4+3x^3-3x^2+3x^3+9x^2-9x+x^2+3x-3-5=x^4+6x^3+7x^2-6x-8=\left(x-1\right)\left(x+1\right)\left(x+2\right)\left(x+4\right)\)
a: Ta có: \(\left(x^2-4\right)\left(x^2-10\right)-72\)
\(=x^4-14x^2-32\)
\(=\left(x^2-16\right)\left(x^2+2\right)\)
\(=\left(x-4\right)\left(x+4\right)\left(x^2+2\right)\)
b: Ta có: \(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)+1\)
\(=\left(x^2+5x+6\right)\left(x^2+5x+4\right)+1\)
\(=\left(x^2+5x\right)^2+10\left(x^2+5x\right)+24+1\)
\(=\left(x^2+5x+1\right)^2\)