tìm x
a) x+5x2=0
b) x+1=(x+1)2
c)x3+x=0
Tìm x
a, 3/4x*(x2-9)=0
b, x3-16x=0
c, (x-1)(x+2)-x-2=0
d, 3x3-27x=0
e, x2(x+1)+2x(x+1)=0
f, x(2x-3)-2(3-2x)=0
c: =>(x-1)(x+1)=0
hay \(x\in\left\{1;-1\right\}\)
a,
\(=\dfrac{3}{4x}.\left(x-3\right)\left(x+3\right)\)=0
\(\left\{{}\begin{matrix}\dfrac{3}{4x}=0\\x-3=0\\x+3=0\end{matrix}\right.\)
=>\(x=\left\{3,-3\right\}\)
b,
\(x^3-16x=0\\x\left(x^2-16\right)\\ x\left(x-4\right)\left(x+4\right)\)
\(\left\{{}\begin{matrix}x=0\\x-4=0\\x+4=0\end{matrix}\right.\)
=>\(x=\left\{-4,0,4\right\}\)
d,
\(3x^3-27x=0\\ 3x\left(x^2-9\right)=0\\ 3x\left(x-3\right)\left(x+3\right)=0\)
\(\left\{{}\begin{matrix}3x=0\\x-3=0\\x+3=0\end{matrix}\right.\)
=>\(x=\left\{-3,0,3\right\}\)
e,
\(x^2+\left(x+1\right)+2x\left(x+1\right)=0\\ x\left(x+1\right)\left(x+2\right)=0\)
\(\left\{{}\begin{matrix}x=0\\x+1=0\\x+2=0\end{matrix}\right.\)
=>\(x=\left\{-2,-1,0\right\}\)
f,
\(x\left(2x-3\right)-2\left(3-2x\right)=0\\ \left(2x-3\right)\left(x+2\right)=0\)
\(\left\{{}\begin{matrix}2x-3=0\\x+2=0\end{matrix}\right.\left\{{}\begin{matrix}x=\dfrac{3}{2}\\x=-2\end{matrix}\right.\)
Bài 1: Giải phương trình:
a) 2x2-6=0
b)x3-5x2+6x=0
c) \(\dfrac{3}{x-1}+\dfrac{2}{x^{2^{ }}+x+1}=\dfrac{3x^2}{x^3-1}\)
Bài 2: Tìm MIN của
A=\(\dfrac{2}{-x^2-2x-2}\)
Bài 2:
\(A=\dfrac{2}{-x^2-2x-2}=\dfrac{-2\left(-x^2-2x-2\right)-2x^2-4x-2}{-x^2-2x-2}\) \(=-2+\dfrac{2\left(x+1\right)^2}{-x^2-2x-2}\ge-2\)
Dấu bằng xảy ra \(\Leftrightarrow x+1=0\Leftrightarrow x=-1\)
Vậy \(A_{Min}=-2\) khi \(x=-1\)
Bài 1:
a) Ta có: \(2x^2-6=0\)
\(\Leftrightarrow2x^2=6\)
\(\Leftrightarrow x^2=3\)
hay \(x\in\left\{\sqrt{3};-\sqrt{3}\right\}\)
Vậy: \(S=\left\{\sqrt{3};-\sqrt{3}\right\}\)
tìm x biết
a,-25+49x2=0
b,16x2-25(x-2)2
c,(3x-2)2-9(x+4)(x+4)=2
d,x3-6x2+12x-8=0
e,-27+27x-9x2+x3=0
a: 49x^2-25=0
=>(7x-5)(7x+5)=0
=>7x-5=0 hoặc 7x+5=0
=>x=5/7 hoặc x=-5/7
b: Đề thiếu vế phải rồi bạn
c: (3x-2)^2-9(x+4)(x-4)=2
=>9x^2-12x+4-9(x^2-16)=2
=>9x^2-12x+4-9x^2+144=2
=>-12x+148=2
=>-12x=-146
=>x=146/12=73/6
d: x^3-6x^2+12x-8=0
=>(x-2)^3=0
=>x-2=0
=>x=2
e: x^3-9x^2+27x-27=0
=>(x-3)^3=0
=>x-3=0
=>x=3
a) \(-25+49x^2=0\)
\(\Leftrightarrow49x^2-25=0\)
\(\Leftrightarrow\left(7x\right)^2-5^2=0\)
\(\Leftrightarrow\left(7x-5\right)\left(7x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}7x-5=0\\7x+5=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}7x=5\\7x=-5\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{7}\\x=-\dfrac{5}{7}\end{matrix}\right.\)
b) \(16x^2-25\left(x-2\right)^2=0\)
\(\Leftrightarrow\left(4x\right)^2-\left[5\left(x-2\right)\right]^2=0\)
\(\Leftrightarrow\left(4x-5x+10\right)\left(4x+5x-10\right)=0\)
\(\Leftrightarrow\left(10-x\right)\left(9x-10\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}10-x=0\\9x=10\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=10\\x=\dfrac{10}{9}\end{matrix}\right.\)
c) \(\left(3x-2\right)^2-9\left(x+4\right)\left(x+4\right)=2\)
\(\Leftrightarrow9x^2-12x+4-9\left(x^2+8x+16\right)=2\)
\(\Leftrightarrow9x^2-12x+4-9x^2-72x-144=2\)
\(\Leftrightarrow-84x-140=2\)
\(\Leftrightarrow-84x=142\)
\(\Leftrightarrow x=-\dfrac{142}{84}\)
\(\Leftrightarrow x=-\dfrac{71}{42}\)
d) \(x^3-6x^2+12x-8=0\)
\(\Leftrightarrow x^3-3\cdot2\cdot x^2+3\cdot2^2\cdot x-2^3=0\)
\(\Leftrightarrow\left(x-2\right)^3=0\)
\(\Leftrightarrow x-2=0\)
\(\Leftrightarrow x=2\)
e) \(-27+27x-9x^2+x^3=0\)
\(\Leftrightarrow x^3-9x^2+27x-27=0\)
\(\Leftrightarrow\left(x-3\right)^3=0\)
\(\Leftrightarrow x-3=0\)
\(\Leftrightarrow x=3\)
Mình sửa lại câu c một chút nha:
c: (3x-2)^2-9(x+4)(x+4)=2
=>(3x-2)^2-9(x+4)^2=2
=>(3x-2)^2-(3x+12)^2=2
=>(3x-2-3x-12)(3x-2+3x+12)=2
=>-14*(6x+10)=2
=>6x+10=-1/7
=>6x=-71/7
=>x=-71/42
1. Rút gọn
a, A=(4x+3y)2 + (4x-3y)2
b,B=(x-23)-(x+2)3
c,C=(x+2y)2+2.(x+2y) (x-2y) + (x-2y)2
2. Tìm x
a, x2+12x+36=0
b,16x2-8x+1=0
c,x3+3x2+3x+1=0
2a) pt <=> (x + 6)^2 = 0
<=> x = -6
b) pt <=> (4x - 1)^2 = 0
<=> x = 1/4
c) pt<=> (x + 1)^3 = 0
<=> x = -1
Bài 1:
a: Ta có: \(A=\left(4x+3y\right)^2+\left(4x-3y\right)^2\)
\(=16x^2+24xy+9y^2+16x^2-24xy+9y^2\)
\(=32x^2+18y^2\)
b: Ta có: \(B=\left(x-2\right)^3-\left(x+2\right)^3\)
\(=x^3-6x^2+12x-8-x^3-6x^2-12x-8\)
\(=-12x^2-24\)
1. Rút gọn
a, A=(4x+3y)2 + (4x-3y)2
b,B=(x-23)-(x+2)3
c,C=(x+2y)2+2.(x+2y) (x-2y) + (x-2y)2
2. Tìm x
a, x2+12x+36=0
b,16x2-8x+1=0
c,x3+3x2+3x+1=0
Bài 2:
a: Ta có: \(x^2+12x+36=0\)
\(\Leftrightarrow x+6=0\)
hay x=-6
b: Ta có: \(16x^2-8x+1=0\)
\(\Leftrightarrow4x-1=0\)
hay \(x=\dfrac{1}{4}\)
Bài 1:
a: Ta có: \(A=\left(4x+3y\right)^2+\left(4x-3y\right)^2\)
\(=16x^2+24xy+9y^2+16x^2-24xy+9y^2\)
\(=32x^2+18y^2\)
b: Ta có: \(B=\left(x-2\right)^3-\left(x+2\right)^3\)
\(=x^3-6x^2+12x-8-x^3-6x^2-12x-8\)
\(=-12x^2-24\)
c: Ta có: \(C=\left(x+2y\right)^2+2\left(x+2y\right)\left(x-2y\right)+\left(x-2y\right)^2\)
\(=\left(x+2y+x-2y\right)^2\)
\(=4x^2\)
1/ số nghiệm của phương trình ( x - 1 ) ( x + 7 ) ( x - 5 ) = 0 là
A. 0
B. 1
C. 2
D. 3
2/ số nghiệm của phương trình ( x2 - 1 ) ( x2 + 7 ) ( x2 - 4 ) = 0 là
A. 1
B. 2
C. 3
D. 4
3/ số nghiệm của phương trình ( x3 - 1 ) ( x2 + 9 ) ( x2 + x + 1 ) = 0 LÀ
A. 1
B.2
C.3
D.4
4/ số nghiệm của phương trình ( x3 - 8 ) ( x2 + 9 ) ( x2 - x + 1 ) = 0 là
A. 1
B. 2
C. 3
D. 4
Bài 5; Tìm x
a) x2-4=0
b) 2x(x+5)-3(5+x)=0
c) x3-6x2+11x-6=0
a) x² - 4 = 0
x² = 4
x = 2 hoặc x = -2
b) 2x(x + 5) - 3(5 + x) = 0
(x + 5)(2x - 3) = 0
X + 5 = 0 hoặc 2x - 3 = 0
*) x + 5 = 0
x = -5
*) 2x - 3 = 0
2x = 3
x = 3/2
c) x³ - 6x² + 11x - 6 = 0
x³ - x² - 5x² + 5x + 6x - 6 = 0
(x³ - x²) - (5x² - 5x) + (6x - 6) = 0
x²(x - 1) - 5x(x - 1) + 6(x - 1) = 0
(x - 1)(x² - 5x + 6) = 0
(x - 1)(x² - 2x - 3x + 6) = 0
(x - 1)[(x² - 2x) - (3x - 6)] = 0
(x - 1)[x(x - 2) - 3(x - 2)] = 0
(x - 1)(x - 2)(x - 3) = 0
x - 1 = 0 hoặc x - 2 = 0 hoặc x - 3 = 0
*) x - 1 = 0
x = 1
*) x - 2 = 0
x = 2
*) x - 3 = 0
x = 3
Vậy x = 1; x = 2; x = 3
Bài 2: Tìm x, biết:
a) 4x(x + 1) = 8( x + 1) c) x2 – 6x + 8 = 0
b) x3 + x2 + x + 1 = 0 d) x3 – 7x – 6 = 0
\(a,\Leftrightarrow\left(4x-8\right)\left(x+1\right)=0\\ \Leftrightarrow4\left(x-2\right)\left(x+1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\\ b,\Leftrightarrow\left(x+1\right)\left(x^2+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-1\\x^2=-1\left(vô.lí\right)\end{matrix}\right.\Leftrightarrow x=-1\\ c,\Leftrightarrow x^2-2x-4x+8=0\\ \Leftrightarrow\left(x-2\right)\left(x-4\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2\\x=4\end{matrix}\right.\\ d,\Leftrightarrow x^3-3x^2+3x-9x+2x-6=0\\ \Leftrightarrow\left(x-3\right)\left(x^2+3x+2\right)=0\\ \Leftrightarrow\left(x-3\right)\left(x^2+x+2x+2\right)=0\\ \Leftrightarrow\left(x-3\right)\left(x+1\right)\left(x+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=3\\x=-1\\x=-2\end{matrix}\right.\)
a) \(\Rightarrow4\left(x+1\right)\left(x-2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=-1\\x=2\end{matrix}\right.\)
b) \(\Rightarrow x^2\left(x+1\right)+\left(x+1\right)=0\)
\(\Rightarrow\left(x+1\right)\left(x^2+1\right)=0\)
\(\Rightarrow x=-1\left(do.x^2+1\ge1>0\right)\)
c) \(\Rightarrow x\left(x-4\right)-2\left(x-4\right)=0\)
\(\Rightarrow\left(x-4\right)\left(x-2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=4\\x=2\end{matrix}\right.\)
d) \(\Rightarrow x^2\left(x-3\right)+3x\left(x-3\right)+2\left(x-3\right)\)
\(\Rightarrow\left(x-3\right)\left(x^2+3x+2\right)=0\)
\(\Rightarrow\left(x-3\right)\left(x+1\right)\left(x+2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=3\\x=-2\\x=-1\end{matrix}\right.\)
tìm x
a 5x3-7x2-15x+21=0
b (x-3)2=4x2-20x+25
c x+x2-x3-x4=0
d 2x3+3x2+2x+3=0
b: 4x^2-20x+25=(x-3)^2
=>(2x-5)^2=(x-3)^2
=>(2x-5)^2-(x-3)^2=0
=>(2x-5-x+3)(2x-5+x-3)=0
=>(3x-8)(x-2)=0
=>x=8/3 hoặc x=2
c: x+x^2-x^3-x^4=0
=>x(x+1)-x^3(x+1)=0
=>(x+1)(x-x^3)=0
=>(x^3-x)(x+1)=0
=>x(x-1)(x+1)^2=0
=>\(x\in\left\{0;1;-1\right\}\)
d: 2x^3+3x^2+2x+3=0
=>x^2(2x+3)+(2x+3)=0
=>(2x+3)(x^2+1)=0
=>2x+3=0
=>x=-3/2
a: =>x^2(5x-7)-3(5x-7)=0
=>(5x-7)(x^2-3)=0
=>\(x\in\left\{\dfrac{7}{5};\sqrt{3};-\sqrt{3}\right\}\)
Tìm X
a) (\(\dfrac{1}{4}\) - X) ( X + \(\dfrac{2}{5}\) ) = 0
b) I 2x + 1 I +\(\dfrac{2}{3}\) = 2
c) (2x - 3 )\(^2\) = 36
d) 7\(^x\) + 2 +2 x 7\(^x\) = 357
a: \(\left(\dfrac{1}{4}-x\right)\left(x+\dfrac{2}{5}\right)=0\)
=>\(\left[{}\begin{matrix}\dfrac{1}{4}-x=0\\x+\dfrac{2}{5}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{4}\\x=-\dfrac{2}{5}\end{matrix}\right.\)
b: \(\left|2x+1\right|+\dfrac{3}{2}=2\)
=>\(\left|2x+1\right|=\dfrac{1}{2}\)
=>\(\left[{}\begin{matrix}2x+1=\dfrac{1}{2}\\2x+1=-\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=-\dfrac{1}{2}\\2x=-\dfrac{3}{2}\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=-\dfrac{1}{4}\\x=-\dfrac{3}{4}\end{matrix}\right.\)
c: (2x-3)2=36
=>\(\left[{}\begin{matrix}2x-3=6\\2x-3=-6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=9\\2x=-3\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=\dfrac{9}{2}\\x=-\dfrac{3}{2}\end{matrix}\right.\)
d: \(7^{x+2}+2\cdot7^x=357\)
=>\(7^x\cdot49+7^x\cdot2=357\)
=>\(7^x=7\)
=>x=1
a) \(\left(\dfrac{1}{4}-x\right)\left(x+\dfrac{2}{5}\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}\dfrac{1}{4}-x=0\\x+\dfrac{2}{5}=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{4}\\x=-\dfrac{2}{5}\end{matrix}\right.\)
\(---\)
b) \(\left|2x+1\right| +\dfrac{2}{3}=2\)
\( \Rightarrow\left|2x+1\right|=2-\dfrac{2}{3}\)
\(\Rightarrow\left|2x+1\right|=\dfrac{4}{3}\)
\(\Rightarrow\left[{}\begin{matrix}2x+1=\dfrac{4}{3}\\2x+1=-\dfrac{4}{3}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x=\dfrac{1}{3}\\2x=-\dfrac{7}{3}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{6}\\x=-\dfrac{7}{6}\end{matrix}\right.\)
\(---\)
c) \(\left(2x-3\right)^2=36\)
\(\Rightarrow\left(2x-3\right)^2=\left(\pm6\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}2x-3=6\\2x-3=-6\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x=9\\2x=-3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{9}{2}\\x=-\dfrac{3}{2}\end{matrix}\right.\)
\(---\)
d) \(7^{x+2}+2\cdot7^x=357\)
\(\Rightarrow7^x\cdot7^2+2\cdot7^x=357\)
\(\Rightarrow7^x\cdot\left(7^2+2\right)=357\)
\(\Rightarrow7^x\cdot\left(49+2\right)=357\)
\(\Rightarrow7^x\cdot51=357\)
\(\Rightarrow7^x=357:51\)
\(\Rightarrow7^x=7\)
\(\Rightarrow x=1\)