Tìm các số x,y,z biết : x/y+z+1=y/z+x+1=z/x+y−2=x+y+z
Tìm các số x;y;z biết:
y+z+1/x=x+z+2/y=x+y-3/z=1/x+y+z
Tìm các số thực x,y,z biết: x+y-3/z=y+z+1/x=x+z+2/y=1/x+y+z
Tìm các số x; y; z biết rằng: \(\dfrac{y+z+1}{x}=\dfrac{x+z+2}{y}=\dfrac{y+x-3}{z}=\dfrac{1}{x+y+z}\)
5) tìm các số x,y,z biết : y+x+1/x = x+z+2/y = 1/x+y+z
Tìm x, y, z biết:\(\dfrac{y+z-2}{x+1}=\dfrac{z+x+1}{y-1}=\dfrac{x+y-3}{z-2}=\dfrac{1}{x+y+z-2}\)(vói giả thiết các tỉ số đều có nghĩa)
Tìm các số x,y,z biết \(\frac{y+z+1}{z}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}\)
Tìm các số thực x,y,z biết
x+y-3/z=y+z+1/x=x+z+2/y=1/x+y+z
Tìm các số x,y,z biết:
(x+y+1)/x=(x+z+2)/y=(x+y-3)/z=1/(x+y+z)
CÁC BN GIÚP MÌNH NHA!
theo tính chất tỷ lệ thức
(y+z+1)/x = (x+z+2)/y = (x+y-3)/z = (y+z+1+x+z+2+x+y-3)/(x+y+z) = 2(x+y+z)/(x+y+z) = 2
=> 1/(x+y+z) = 2
<=> x + y + z = 1/2 <=> y + z = 1/2 - x (1)
.(y+z+1)/x = 2 <=> y + z + 1 = 2x
kết hợp với (1) => 1/2 - x + 1 = 2x
<=> x = 1/2 => y + z = 0 <=> y = -z
có (x+y-3)/z = 2
<=> x + y - 3 = 2z
<=> y - 2z = 5/2
do y = -z => -3z = 5/2 <=> z = -5/6
y = 5/6
Vậy nghiệm tìm được (x;y;z) = (1/2;5/6;-5/6)
Tìm các số x,y,z biết:
(y+x+1)/x=(x+z+2)/y=(x+y-3)/z=1/(x+y+z)
CÁC BN GIÚP MÌNH NHA!
Điều kiện: x,y,z khác 0 (hiển nhiên x + y + z khác 0)
theo tính chất tỷ lệ thức
(y+z+1)/x = (x+z+2)/y = (x+y-3)/z = (y+z+1+x+z+2+x+y-3)/(x+y+z) = 2(x+y+z)/(x+y+z) = 2
=> 1/(x+y+z) = 2
<=> x + y + z = 1/2 <=> y + z = 1/2 - x (1)
.(y+z+1)/x = 2 <=> y + z + 1 = 2x
kết hợp với (1) => 1/2 - x + 1 = 2x
<=> x = 1/2 => y + z = 0 <=> y = -z
có (x+y-3)/z = 2
<=> x + y - 3 = 2z
<=> y - 2z = 5/2
do y = -z => -3z = 5/2 <=> z = -5/6
y = 5/6
Vậy nghiệm tìm được (x;y;z) = (1/2;5/6;-5/6)
còn cách khác đây
Ap dung tinh chat day ti so bang nhau :
(y+z+1)/x = (x+z+2)/y = (x+y-3)/z = (y+z+1+x+z+2+x+y-3)/(x+y+z) = 2(x+y+z)/(x+y+z) = 2
=> 1/(x+y+z) = 2
<=> x + y + z = 1/2 <=> y + z = 1/2 - x (1)
(y+z+1)/x = 2 <=> y + z + 1 = 2x
kết hợp với (1) => 1/2 - x + 1 = 2x
<=> x = 1/2 => y + z = 0 <=> y = -z
có (x+y-3)/z = 2
<=> x + y - 3 = 2z
<=> y - 2z = 5/2
do y = -z => -3z = 5/2 <=> z = -5/6 y = 5/6
Vậy nghiệm tìm được (x;y;z) = (1/2;5/6;-5/6)
áp dụng t/c DTSBN ta có : (y+x+1)/x=(x+z+2)/y=(x+y-3)/z=y+x+1+x+z+2+x+y-3/x+y+z=2y+2x+2z/x+y+z =2.(x+y+z)/x+y+z=1/x+y+z=2 =>x+y+z=0,5 => x+z=0,5-y =>x+z+2/y=2=>0,5-y+2/y=>0,5-y+2=2y => 3y=2,5 => y=5/6 làm tương tự
1) Cho x, y, z là ba số dương phân biệt. Hãy tìm tỉ số x/y ,biết rằng:
y/x-z=x+y/z=x/y
2) Tìm các số x, y, z , biết rằng
x-1/2=y+3/4=z-5/6 và 5z-3x-4y=50