Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
da Ngao
Xem chi tiết
ILoveMath
7 tháng 11 2021 lúc 16:03

C

Tuấn Nguyễn
7 tháng 11 2021 lúc 16:14

c

Lưu Nhật Minh
Xem chi tiết
Nguyễn Hoàng Minh
9 tháng 12 2021 lúc 19:14

Vì a,b,c là 3 cạnh tam giác nên \(a+b>c\Leftrightarrow ac+bc>c^2\)

CMTT: \(ab+bc>b^2;ab+ac>a^2\)

Cộng vế theo vế \(\Leftrightarrow a^2+b^2+c^2< ab+bc+ca+ab+bc+ca\)

\(\Leftrightarrow a^2+b^2+c^2< 2ab+2bc+2ca\\ \Leftrightarrow a^2+b^2+c^2-2ab-2bc-2ca< 0\)

 

PH_gaming
Xem chi tiết
M r . V ô D a n h
16 tháng 8 2021 lúc 8:42

2

Ta có:

VP=(a+b)3−3ab(a+b)VP=(a+b)3-3ab(a+b)

     =a3+b3+3ab(a+b)−3ab(a+b)=a3+b3+3ab(a+b)-3ab(a+b)

     =a3+b3=VT(dpcm)

Châu Huỳnh
16 tháng 8 2021 lúc 8:45

1, \(VT=a^2+b^2=a^2+b^2+2ab-2ab=\left(a+b\right)^2-2ab=VP\left(đpcm\right)\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
3 tháng 6 2018 lúc 17:04

Ta có: a - b 2 ≥ 0 a 2 + b 2 - 2 a b ≥ 0

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
5 tháng 10 2019 lúc 17:48

Hà Việt Thành
17 tháng 2 2021 lúc 19:32

a, a(b+c)−b(a−c)a(b+c)−b(a−c)

=ab+ac−(ab−bc)=ab+ac−(ab−bc)

=ab+ac−ab+bc=ab+ac−ab+bc

=ac+bc=ac+bc

=(a+b)c=(a+b)c

b,(a+b)(a−b)(a+b)(a−b)

=(aa+ab)−(ab+bb)=(aa+ab)−(ab+bb)

=aa+ab−ab−bb

Khách vãng lai đã xóa
Ank Dương
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 1 2023 lúc 21:43

(a-b)^2=(a-b)(a-b)=a^2-ab-ab+b^2=a^2-2ba+b^2

(a-b)(a+b)=a^2+ab-ab-b^2=a^2-b^2

(a+3)^3=(a+b)^2*(a+b)

=(a^2+2ab+b^2)(a+b)

=a^3+a^2b+2a^2b+2ab^2+b^2a+b^3

=a^3+3a^2b+3ab^2+b^3

Quoc Tran Anh Le
Xem chi tiết

\(\left(a+b\right)^3=\left(a+b\right)^2\cdot\left(a+b\right)\)

\(=\left(a^2+2ab+b^2\right)\left(a+b\right)\)

\(=a^3+a^2b+2a^2b+2ab^2+ab^2+b^3\)

\(=a^3+3a^2b+3ab^2+b^3\)

Trần Thế Miên An
Xem chi tiết
phung tuan anh phung tua...
13 tháng 1 2022 lúc 14:29

B

Vũ Minh Cường
16 tháng 10 2022 lúc 16:10

YRGFGYSTHRBHFYSVGSYG

Vũ Minh Cường
16 tháng 10 2022 lúc 16:11

GYE4F4GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG

Kim Phúc
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 5 2022 lúc 23:29

a: \(a^4+b^4\ge2a^2b^2\)

\(\Leftrightarrow a^4-2a^2b^2+b^4>=0\)

hay \(\left(a^2-b^2\right)^2\ge0\)(luôn đúng)

d: \(\left(a+b\right)^2\ge4ab\)

\(\Leftrightarrow a^2+2ab+b^2-4ab\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\)(luôn đúng)

Phúc Hoàng
Xem chi tiết