Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
lien nguyen
Xem chi tiết
Nguyễn Thành Nam
Xem chi tiết
Duong Thi Nhuong
Xem chi tiết
Thúy Candy
4 tháng 10 2016 lúc 22:37

x=5

y=\(\frac{1}{4}\)

Dương Thị Thùy Linh
18 tháng 1 2017 lúc 22:09

x=5

nameless
Xem chi tiết
Dũng Lê Trí
8 tháng 9 2019 lúc 10:06

\(\frac{1+4y}{18}=\frac{1+5y}{24}\Rightarrow24+96y=18+90y\)

\(\Rightarrow6+6y=0\Leftrightarrow6\left(1+y\right)=0\)Vậy y = -1

Thay y = -1 ta có :

\(\frac{1-5}{24}=\frac{1-6}{6x}\Leftrightarrow\frac{-5}{30}=-\frac{5}{6x}\left(\frac{-4}{24}=-\frac{5}{30}=\frac{1-5}{24}\right)\)

Vậy 6x = 30 hay x = 5 

Phương Anh Đỗ
Xem chi tiết
thien ty tfboys
21 tháng 12 2016 lúc 17:03

\(\frac{a^2-2ab}{a^2b}.P=\frac{a^2b-4b^3}{3ab^2}\)

\(P=\frac{a^2b-4b^3}{3ab^2}:\frac{a^2-2ab}{a^2b}\)

\(P=\frac{a^2b-4b^3}{3ab^2}.\frac{a^2b}{a^2-2ab}\)

\(P=\frac{b\left(a^2-4b^2\right)}{3ab^2}.\frac{a^2b}{a\left(a-2b\right)}\)

\(P=\frac{b\left(a-2b\right)\left(a+2b\right)}{3ab^2}.\frac{a^2b}{a\left(a-2b\right)}\)

\(P=\frac{b\left(a+2b\right)}{3b}.\frac{a}{a}\)

\(P=\frac{a+2b}{3}\)

Bùi Thế Hào
21 tháng 12 2016 lúc 10:36

P=\(\frac{a^2b.b\left(a^2-4b^2\right)}{3ab^2.a\left(a-2b\right)}=\frac{a^2b^2\left(a-2b\right)\left(a+2b\right)}{3a^2b^2\left(a-2b\right)}\)

=> P=\(\frac{a+2b}{3}\)

Uzumaki
Xem chi tiết
Võ Đông Anh Tuấn
11 tháng 6 2016 lúc 9:49

Ta có: 1+2y/18=1+4y/24  

=>  24(1+2y)=18(1+4y)   

  =>24+48y=18+72y 

   =>24-18=72y-48y   

  =>6=24y   

=>  y=1/4

    thay y=1/4 vào đề ta có: 

(1+ 1/2)/18=1+1/24=(1+3/2)/6x  

  =>1/12=(5/2)/6x  

  => 12(5/2)=6x 

   =>30=6x  

=>x=5                                  

Vậy x=5 

   y=1/4

Nguyễn Đình Bắc
Xem chi tiết
Duyên
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
6 tháng 6 2020 lúc 20:43

a) Biến đổi VT . Mẫu chung là ( a + 2b )( a - 2b )

\(VT=\frac{a+2b-6b-2\left(a-2b\right)}{a^2-4b^2}=-\frac{a}{a^2-4b^2}\)( 1 )

Biến đổi VP 

\(-\frac{1}{2a}\left(\frac{a^2+4b^2}{a^2-4b^2}+1\right)=-\frac{1}{2a}\cdot\frac{a^2+4b^2+a^2-4b^2}{a^2-4b^2}\)

\(=-\frac{1}{2a}\cdot\frac{2a^2}{a^2-4b^2}=-\frac{a}{a^2-4b^2}\)( 2 )

Từ ( 1 ) và ( 2 ) => VT = VP ( đpcm )

b) \(a^3+b^3+\left(\frac{b\left(2a^3+b^3\right)}{a^3-b^3}\right)=\left(\frac{a\left(a^3+2b^3\right)}{a^3-b^3}\right)^3\)

<=> \(b^3+\left(\frac{b\left(2a^3+b^3\right)}{a^3-b^3}\right)^3=\left(\frac{a\left(a^3+2b^3\right)}{a^3-b^3}\right)-a^3\)( * )

Biến đổi VT của ( * ) ta có :

\(VT=\left[b+\frac{b\left(2a^3+b^3\right)}{a^3-b^3}\right]\left[b^2-\frac{b^2\left(2a^3+b^3\right)}{a^3-b^3}+\frac{b^2\left(2a^3+b^3\right)^2}{\left(a^3-b^3\right)^2}\right]\)

\(=\frac{3a^3b}{a^3-b^3}\cdot\frac{3a^6b^2+3a^3b^5+3b^8}{\left(a^3-b^3\right)^2}\)

\(=\frac{9a^3b^3}{\left(a^3-b^3\right)^3}\left(a^6+a^3b^3+b^6\right)\)( 1 )

\(VP=\left[\frac{a\left(a^3+2b^3\right)}{a^3-b^3}-a\right]\left[\frac{a^2\left(a^3+2b^3\right)^2}{\left(a^3-b^3\right)^2}+\frac{a^2\left(a^3+2b^3\right)}{a^3-b^3}+a^2\right]\)

\(=\frac{3ab^3}{a^3-b^3}\cdot\frac{3a^8+3a^5b^3+3a^2b^6}{\left(a^3-b^3\right)^2}\)

\(=\frac{9a^3b^3}{\left(a^3-b^3\right)^3}\left(a^6+a^3b^3+b^6\right)\)( 2 )

Từ ( 1 ) và ( 2 ) => VT = VP => ( * ) đúng 

=> Hằng đẳng thức đúng 

Khách vãng lai đã xóa
dam thu a
Xem chi tiết
Nguyễn Việt Lâm
23 tháng 2 2020 lúc 9:39

Đặt \(\left(\frac{1}{2a+1};\frac{1}{2b+1};\frac{1}{2c+1}\right)=\left(x;y;z\right)\Rightarrow x+y+z\ge1\)

Mặt khác do \(a;b;c>0\Rightarrow x;y;z< 1\)

Ta có: \(P=\frac{x}{3-2x}+\frac{y}{3-2y}+\frac{z}{3-2z}\)

Ta có đánh giá: \(\frac{x}{3-2x}\ge\frac{27x-2}{49}\) \(\forall x\in\left(0;1\right)\)

\(\Leftrightarrow9x^2-6x+1\ge0\Leftrightarrow\left(3x-1\right)^2\ge0\) (luôn đúng)

Thiết lập tương tự và cộng lại:

\(P\ge\frac{27\left(x+y+z\right)-6}{49}\ge\frac{21}{49}=\frac{3}{7}\)

Dấu "=" xảy ra khi \(x=y=z=\frac{1}{3}\) hay \(a=b=c=1\)

Khách vãng lai đã xóa