Giai phương trình :
e ) || x - 2 | + 3| = 5
Giai hệ phương trình :
/x+3/ + \(\dfrac{2}{y}\) = 3
2/x+2/ - \(\dfrac{5}{y}\) = -3
mk cần gấp ạ
HELP MEEEE, ai giải đc xin tặng 2GP ạ
Bài 2 ) Giai phương trình
a)/x-1/=-3
b) /2x+1/=0
c)/3-2x/=4
d)/x+1/+3x=4
e) /x+1-4x/=5
g) /x-1/+/x-3/=2
k)/x-1/+/x-2/+/x-3/=2
Giai các phương trình
a, |x-3| + |5-x|=2a
b) 2|x+a|-|x-2a|=3a
xin loi
minh chang hieu cai gi ca
nho k minh nha
minh k lai cho
À thêm điều kiện a là hằng số nữa nha
Cho phương trình : \(\frac{x-2}{3}-\frac{x}{m}=\frac{2}{m}\)
a, Giai phương trình với m = 2
b, Giai phương trình với m là hằng số
c, Tìm m để phương trình cho nghiệm x = -2
Giai cac bất phương trình:
a) (x-3)(x-2)<0
b) (x+3)(x+4)(x2+2)≥≥ 0
c) x−1x−2x−1x−2 ≥≥0
d)x+32−xx+32−x≥≥ 0
e) (x-3)(x-2)(x+1)<0
g) 2x−12x−1<0
k) x2 +3x+2>0
m) x2+1<0
Bài 2 ) Giai phương trình
a)/x-1/=-3
b) /2x+1/=0
c)/3-2x/=4
d)/x+1/+3x=4
e) /x+1-4x/=5
g) /x-1/+/x-3/=2
k)/x-1/+/x-2/+/x-3/=2
Giai phương trình.
\(\frac{5}{x}+\frac{4}{x+1}=\frac{3}{x+2}+\frac{2}{x+3}\)
Mình nghĩ tại vì :
\(\frac{1}{x}+\frac{1}{x+1}-\frac{1}{x+2}-\frac{1}{x+3}=\left(\frac{1}{x}+\frac{1}{x+1}\right)-\left(\frac{1}{x+2}+\frac{1}{x+3}\right)\)
Xét trường hợp \(x\)nguyên dương ta có :
\(\frac{1}{x}>\frac{1}{x+2}\)và \(\frac{1}{x+1}>\frac{1}{x+3}\)
\(\Rightarrow\)\(\frac{1}{x}+\frac{1}{x+1}>\frac{1}{x+2}+\frac{1}{x+2}\)
\(\Rightarrow\)\(\left(\frac{1}{x}+\frac{1}{x+1}\right)-\left(\frac{1}{x+2}+\frac{1}{x+3}\right)>0\)
Xét trường hợp \(x\)nguyên âm ta có :
\(\frac{1}{x}< \frac{1}{x+2}\)và \(\frac{1}{x+1}< \frac{1}{x+3}\)
\(\Rightarrow\)\(\frac{1}{x}+\frac{1}{x+1}< \frac{1}{x+2}+\frac{1}{x+3}\)
\(\Rightarrow\)\(\left(\frac{1}{x}+\frac{1}{x+1}\right)-\left(\frac{1}{x+2}+\frac{1}{x+3}\right)< 0\)
Loại trường hợp \(x=0\)vì mẫu phải khác \(0\)
Mình nghĩ vậy :))
Ta có :
\(\frac{5}{x}+\frac{4}{x+1}=\frac{3}{x+2}+\frac{2}{x+3}\)
\(\Leftrightarrow\)\(\left(\frac{5}{x}+1\right)+\left(\frac{4}{x+1}+1\right)=\left(\frac{3}{x+2}+1\right)+\left(\frac{2}{x+3}+1\right)\)
\(\Leftrightarrow\)\(\frac{x+5}{x}+\frac{x+5}{x+1}-\frac{x+5}{x+2}-\frac{x+5}{x+3}=0\)
\(\Leftrightarrow\)\(\left(x+5\right)\left(\frac{1}{x}+\frac{1}{x+1}+\frac{1}{x+2}+\frac{1}{x+3}\right)=0\)
Vì \(\left(\frac{1}{x}+\frac{1}{x+1}+\frac{1}{x+2}+\frac{1}{x+3}\right)\ne0\)
\(\Rightarrow\)\(x+5=0\)
\(\Rightarrow\)\(x=-5\)
Vậy \(x=-5\)
Phùng Minh Quân bạn có thể chứng minh cái trong ngoặc khác 0 không?
Giai phương trình x-1/99+x-3/97+x-5/95= x-2/98+x-4/96+x-968/975+x-4/94
giup mình với
sửa đề đến đây thôi bạn nhé, do nếu thêm vào thì mình cũng ko biết có quy luật gì nữa :<
\(\dfrac{x-1}{99}-1+\dfrac{x-3}{97}-1+\dfrac{x-5}{95}-1=\dfrac{x-2}{98}-1+\dfrac{x-4}{96}-1\)
\(\Leftrightarrow\dfrac{x-100}{99}+\dfrac{x-100}{97}+\dfrac{x-100}{95}=\dfrac{x-100}{98}+\dfrac{x-100}{96}\)
\(\Leftrightarrow\left(x-100\right)\left(\dfrac{1}{99}+\dfrac{1}{97}+\dfrac{1}{95}-\dfrac{1}{98}-\dfrac{1}{96}\ne0\right)=0\Leftrightarrow x=100\)
Giai phương trình:\(\left(\sqrt{x+5}-\sqrt{x+2}\right)\left(\sqrt{x^2+7x+10}+1\right)=3\)
\(\left(\sqrt{x+5}-\sqrt{x+2}\right)\left(\sqrt{x^2+7x+10}+1\right)=3\)
\(\Leftrightarrow\left(\sqrt{x+5}-\sqrt{x+2}\right)\left(\sqrt{\left(x+5\right)\left(x+2\right)}+1\right)=3\)
Đặt \(\hept{\begin{cases}\sqrt{x+5}=a\left(a\ge0\right)\\\sqrt{x+2}=b\left(b\ge0\right)\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}a^2-b^2=3\\\left(a-b\right)\left(ab+1\right)=3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a^2-b^2=3\\\left(a-b\right)\left(ab+1-a-b\right)=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a^2-b^2=3\\\left(a-b\right)\left(a-1\right)\left(b-1\right)=0\end{cases}}\)
Với a = b thì
\(\sqrt{x+5}=\sqrt{x+2}\Leftrightarrow0x=3\left(l\right)\)
Với a = 1 thì
\(\sqrt{x+5}=1\Leftrightarrow x=-4\left(l\right)\)
Với b = 1 thì
\(\sqrt{x+2}=1\Leftrightarrow x=-1\)
Giai phương trình \(2\sqrt{x-1}+3\sqrt{5-x}=2\sqrt{13}\)