CMR nếu \(a^2+b^2\le2\) thì \(a+b\le2\)
Cho 2 số thực a,b thỏa mãn điểu kiện \(a^2+b^2\le2\).CMR \(a+b\le2\)
Ta có BDT luôn đúng \(\left(a-b\right)^2\ge0\) \(\Leftrightarrow a^2+b^2\ge2ab\) \(\Leftrightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\). Do \(a^2+b^2\le2\) nên \(2\left(a^2+b^2\right)\le4\).
Do đó \(\left(a+b\right)^2\le4\) \(\Leftrightarrow-2\le a+b\le2\), suy ra đpcm. ĐTXR \(\Leftrightarrow a=b=1\)
Cho \(a^2+b^2\le2\) CMR \(a+b\le2\left(a+b\right)^3\)
vì a2 và b2 là 2 SCP nên chúng là STN
thử các trường hợp chỉ có 1 và 1 thỏa mãn => a và b đều = 1
=> a + b < 2(a + b)3 vì 2 < 16 (đpcm)
Chứng minh rằng nếu \(0< b< a\le2\) và \(2ab\le2b+a\) thì \(a^2+b^2\le5\)
cho \(a,b\in R\) và\(a^2+b^2\le2\)cmr \(a+b\le2\)
Giả sử (a+b)>2 thì (a+b)^2>4>>>>2(a^2+b^2)>=(a+b)^2>4>>>a^2+b^2>2(trái với gt đề bài)>>>Gt sai
>>>(a+b)<=2
cho a^2 + b^2 <= 2. CMR : a + b \(\le2\)
Ta có :
\(a^2+b^2\le2\) ( 1 )
Mặt khác \(2ab\le a^2+b^2\)nên
\(2ab\le a^2+b^2\le2\) ( 2 )
Cộng ( 1 ) với ( 2 ) , \(a^2+b^2+2ab\le4\)\(\Rightarrow\left(a+b\right)^2\le4\)\(\Rightarrow a+b\le2\)
Cho a, b>0 và a+b=2.CMR: \(a^2\cdot b^2\cdot\left(a^2+b^2\right)\le2\)
Cho a+b=2
CMR : \(\sqrt[3]{a}+\sqrt[3]{b}\le2\)
Áp dụng bất đẳng thức Holder, ta có:
\(\left[\left(\sqrt[3]{a}\right)^3+\left(\sqrt[3]{b}\right)^3+1^3\right].\left(1^3+1^3+1^3\right).\left(1^3+1^3+1^3\right)\ge\left(\sqrt[3]{a}.1.1+\sqrt[3]{b}.1.1+1.1.1\right)^3\)
<=>\(\left(a+b+1\right).9\ge\left(\sqrt[3]{a}+\sqrt[3]{b}+1\right)^3\)
Vì a+b=3
=>\(\left(\sqrt[3]{a}+\sqrt[3]{b}+1\right)^3\le27\)
<=>\(\sqrt[3]{a}+\sqrt[3]{b}+1\le3\)
<=>\(\sqrt[3]{a}+\sqrt[3]{b}\le2\)
Dấu "=" xảy ra khi: a=b=1
=>ĐPCM
Cho \(a^3+b^3=2\)CMR \(a+b\le2\)
Ta có:\(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\)
Từ giả thiết ta có a,b \(\ne\)0\(\Rightarrow a+b=\frac{a^3+b^3}{a^2-ab+b^2}=\frac{2}{a^2-ab+b^2}\)
Vì \(a^2-ab+b^2=\frac{a^2-2ab+b^2+a^2+b^2}{2}=\frac{\left(a-b\right)^2+a^2+b^2}{2}\ge0\)
nên \(a+b=\frac{2}{a^2-ab+b^2}\le\frac{2}{1}=2\)
Linh_Chi_chimte:\(a^2-ab+b^2\ge0\) mà \(a^2-ab+b^2\ne0\)
\(\Rightarrow a^2-ab+b^2\ge1\Rightarrow\frac{2}{a^2-ab+b^2}\le\frac{2}{1}=2\)
Hiểu chưa bạn
CMR: \(\sqrt{a}+\sqrt{b}\le2\sqrt{\frac{a+b}{2}}\); a; b không âm