Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Quang Đẹp Trai
Xem chi tiết
Lê Song Phương
18 tháng 6 2023 lúc 8:13

 Ta có BDT luôn đúng \(\left(a-b\right)^2\ge0\) \(\Leftrightarrow a^2+b^2\ge2ab\) \(\Leftrightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\). Do \(a^2+b^2\le2\) nên \(2\left(a^2+b^2\right)\le4\).

 Do đó \(\left(a+b\right)^2\le4\) \(\Leftrightarrow-2\le a+b\le2\), suy ra đpcm. ĐTXR \(\Leftrightarrow a=b=1\)

Cầm Dương
Xem chi tiết
Nga Nguyễn
26 tháng 3 2017 lúc 17:14

vì avà b2 là 2 SCP nên chúng là STN

thử các trường hợp chỉ có 1 và 1 thỏa mãn => a và b đều = 1

=> a + b < 2(a + b)3 vì 2 < 16 (đpcm)

yeens
Xem chi tiết
Bảo Uyên Ngô
Xem chi tiết
Hoàng Minh Hoàng
9 tháng 8 2017 lúc 8:04

Giả sử (a+b)>2 thì (a+b)^2>4>>>>2(a^2+b^2)>=(a+b)^2>4>>>a^2+b^2>2(trái với gt đề bài)>>>Gt sai

>>>(a+b)<=2

Avicii
Xem chi tiết
Thanh Tùng DZ
20 tháng 5 2019 lúc 9:35

Ta có :

\(a^2+b^2\le2\)  ( 1 )

Mặt khác \(2ab\le a^2+b^2\)nên

\(2ab\le a^2+b^2\le2\)       ( 2 )

Cộng ( 1 ) với ( 2 ) , \(a^2+b^2+2ab\le4\)\(\Rightarrow\left(a+b\right)^2\le4\)\(\Rightarrow a+b\le2\)

Nguyệt
20 tháng 5 2019 lúc 21:06

a+b <=2 thế a+b=-3 thì sao??? 

:>
20 tháng 5 2019 lúc 21:10

nhầm >:  

Phùng Tiến Thành
Xem chi tiết
Hoàng Phúc
Xem chi tiết
Lê Chí Cường
18 tháng 11 2016 lúc 21:57

Áp dụng bất đẳng thức Holder, ta có: 

\(\left[\left(\sqrt[3]{a}\right)^3+\left(\sqrt[3]{b}\right)^3+1^3\right].\left(1^3+1^3+1^3\right).\left(1^3+1^3+1^3\right)\ge\left(\sqrt[3]{a}.1.1+\sqrt[3]{b}.1.1+1.1.1\right)^3\)

<=>\(\left(a+b+1\right).9\ge\left(\sqrt[3]{a}+\sqrt[3]{b}+1\right)^3\)

Vì a+b=3

=>\(\left(\sqrt[3]{a}+\sqrt[3]{b}+1\right)^3\le27\)

<=>\(\sqrt[3]{a}+\sqrt[3]{b}+1\le3\)

<=>\(\sqrt[3]{a}+\sqrt[3]{b}\le2\)

Dấu "=" xảy ra khi: a=b=1

=>ĐPCM

Lê Chí Cường
18 tháng 11 2016 lúc 21:58

nhầm a+b=2 đó nha  

Linh_Chi_chimte
Xem chi tiết
Trần Quốc Anh
1 tháng 1 2018 lúc 7:33

Ta có:\(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\)

Từ giả thiết ta có a,b \(\ne\)0\(\Rightarrow a+b=\frac{a^3+b^3}{a^2-ab+b^2}=\frac{2}{a^2-ab+b^2}\)

Vì \(a^2-ab+b^2=\frac{a^2-2ab+b^2+a^2+b^2}{2}=\frac{\left(a-b\right)^2+a^2+b^2}{2}\ge0\)

nên \(a+b=\frac{2}{a^2-ab+b^2}\le\frac{2}{1}=2\)

Linh_Chi_chimte
1 tháng 1 2018 lúc 7:51

Tại sao \(a^2-ab+b^2=1\)vậy bn??

Nguyễn Hưng Phát
1 tháng 1 2018 lúc 8:37

Linh_Chi_chimte:\(a^2-ab+b^2\ge0\) mà \(a^2-ab+b^2\ne0\)

\(\Rightarrow a^2-ab+b^2\ge1\Rightarrow\frac{2}{a^2-ab+b^2}\le\frac{2}{1}=2\)

Hiểu chưa bạn

Hạnh Lương
Xem chi tiết