Tìm hệ số của x2 trong đa thức :
A= (x-3)3 - (x+3)3
Tìm tổng các hệ số của đa thức nhận được sau khi bỏ dấu ngoặc trong biểu thức: A(x) = ( 3 - 4x + x2 )2004 .( 3 + 4x + x2 )2005
Tổng các hệ số là:
A(1)=(3-4+1)^2004*(3+4+1)^2005=0
Cho hai đa thức A(x) = 3(x2+2-4x)-2x(x-2)+17 và B(x) = 3x2-7x+3-3(x2-2x+4) a) Thu gọn A(x),B(x). Sắp xếp các đa thức theo luỹ thừa giảm dần của biến. Tìm hệ số cai nhất, hệ số tự do của hai đa thức đó b) Tìm N(x) sao cho N(x)-B(x)=A(x) và M(x) sao cho A(x)-M(x)=B(x).
`@` `\text {Ans}`
`\downarrow`
`a)`
`A(x) = \(3(x^2+2-4x)-2x(x-2)+17\)
`= 3x^2 + 6 - 12x - 2x^2 + 4x + 17`
`= x^2 - 8x + 23`
Hệ số cao nhất: `1`
Hệ số tự do: `23`
`B(x) = \(3x^2-7x+3-3(x^2-2x+4)\)
`=3x^2 - 7x + 3 - 3x^2 + 6x - 12`
`= -x - 9`
Hệ số cao nhất: `-1`
Hệ số tự do: `-9`
`b)`
`N(x) - B(x) = A(x)`
`=> N(x) = A(x) + B(x)`
`=> N(x) = (x^2 - 8x + 23)+(-x-9)`
`= x^2 - 8x + 23 - x - 9`
`= x^2 - 9x + 14`
`A(x) - M(x) = B(x)`
`=> M(x) = A(x) - B(x)`
`=> M(x) = (x^2 - 8x + 23) - (-x - 9)`
`= x^2 - 8x + 23 + x+9`
`= x^2 - 7x +32`
a)A(x) = 3(x^2 + 2 - 4x) - 2x(x - 2) + 17
= 3x^2 + 6 - 12x - 2x^2 + 4x + 17
= x^2 - 2x + 23
b)B(x) = 3x^2 - 7x + 3 - 3(x^2 - 2x + 4)
= 3x^2 - 7x + 3 - 3x^2 + 6x - 12
= -x + -9
A(x) = x^2 - 2x + 23
B(x) = -x - 9
Hệ số cao nhất của đa thức A(x) là 1, hệ số tự do của A(x) là 23.
Hệ số cao nhất của đa thức B(x) là -1, hệ số tự do của B(x) là -9.
b)
N(x) - B(x) = A(x)
N(x) - (-x - 9) = x^2 - 2x + 23
N(x) + x + 9 = x^2 - 2x + 23
N(x) = x^2 - 3x + 14
Vậy, N(x) = x^2 - 3x + 14.
A(x) - M(x) = B(x)
x^2 - 2x + 23 - M(x) = -x - 9
x^2 - 2x + x + 9 + 23 = M(x)
x^2 - x + 32 = M(x)
Vậy, M(x) = x^2 - x + 32.
a: A(x)=3x^2+6-12x-2x^2+4x+17
=x^2-8x+23
B(x)=3x^2-7x+3-3x^2+6x-12=-x-9
Hệ số cao nhất của A(x) là 1
Hệ số tự do của A(x) là 23
Hệ số cao nhất của B(x) là -1
Hệ số tự do của B(x) là -9
b: N(x)=A(x)+B(x)
=x^2-8x+23-x-9
=x^2-9x+14
M(x)=A(x)-B(x)
=x^2-8x+23+x+9
=x^2-7x+32
Bài toán 6. Tìm tổng các hệ số của đa thức nhận được sau khi bỏ dấu ngoặc trong biểu thức: A(x) = ( 3 - 4x + x2 )2004 .( 3 + 4x + x2 )2005
1/ Chứng minh M(x)= -x2 + 5 không có nghiệm.
2/ Tìm hệ số a của đa thức M(x)= a x2 + 5 x - 3, biết rằng đa thức này có một nghiệm là \(\dfrac{1}{2}\)
a/ \(M\left(x\right)=-x^2+5\)
Có \(-x^2\le0\forall x\)
=> \(M\left(x\right)\le5\forall x\)
=> M(x) không có nghiệm.
2/
Thay \(x=\dfrac{1}{2}\) vào đa thức M(x) có
\(M\left(\dfrac{1}{2}\right)=\dfrac{1}{4}a+\dfrac{5}{2}-3=0\)
\(\Leftrightarrow\dfrac{1}{4}a=\dfrac{1}{2}\)
\(\Leftrightarrow a=2\)
Vậy...
Tìm tổng các hệ số của đa thức nhận được sau khi bỏ dấu ngoặc trong biểu thức:
A(x) =(3-4x+x2)2004.(3+4x+x2)2005
ai làm đúng mk tick cho
\(A\left(x\right)=\left(3-4+x^2\right)^{2004}\left(3+4x+x^2\right)^{2005}\)
Đa thức `A(x)` sau khi bỏ dấu ngoặc:
\(A\left(x\right)=a_nx^n+a_{n-1}x^{n-1}+...+a_1x+a_0\)
Với `n = 2 . 2004 + 2 . 2005 = 8018`
Ta thay `x = 1` thì \(A\left(1\right)=a_n+a_{n-1}+...+a_1+a_0\)
`=> A(1)` là tổng các hệ số của `A(x)` khi bỏ dấu ngoặc
Ta có: \(A\left(1\right)=\left(3-4.1+1^2\right)^{2004}\left(3+4.1+1^2\right)^{2005}\)
\(=0^{2004}.8^{2005}=0\)
Vậy tổng các hệ số của đa thức `A(x)` nhận được sau khi bỏ dấu ngoặc là `0`
Tìm các hệ số a, b và c biết:
a) Đa thức x 3 +2ax + b chia hết cho đa thức x - 1 còn khi chia cho đa thức x + 2 được dư là 3.
b) Đa thức a x 3 + b x 2 + c khi chia cho đa thức x dư - 3 còn khi chia cho đa thức x 2 - 4 được dư là 4x - 11.
Thu gọn các đa thức sau rồi sắp xếp các hạng tử của chúng theo lũy thừa giảm dần của biến, tìm bậc, hệ số cao nhất, hệ số tự do:
P(x)=33 + x2 + 4x4 - x- 3x3 + 5x4 + x2 - 6
Q(x)=2x3 - x4 - \(\dfrac{1}{2}\)x2 - 3 + \(\dfrac{3}{4}\)x- \(\dfrac{1}{3}\)x2 + x4 - \(\dfrac{7}{4}\)x
Sửa đề: \(P=3x^3+x^2+4x^4-x-3x^3+5x^4+x^2-6\)
Ta có: \(P=3x^3+x^2+4x^4-x-3x^3+5x^4+x^2-6\)
\(=9x^4+2x^2-x-6\)
Ta có: \(Q\left(x\right)=2x^3-x^4-\dfrac{1}{2}x^2-3+\dfrac{3}{4}x-\dfrac{1}{3}x^2+x^4-\dfrac{7}{4}x\)
\(=2x^3-\dfrac{5}{6}x^2-x-3\)
Bài toán 6. Tìm tổng các hệ số của đa thức nhận được sau khi bỏ dấu ngoặc trong biểu thức: A(x) = ( 3 - 4x + x2 )2004 .( 3 + 4x + x2 )2005
Bài toán 7. Cho a là số gồm 2n chữ số 1, b là số gồm n + 1 chữ số 1, c là số gồm n chữ số 6. Chứng minh rằng a + b + c + 8 là số chính phương.
Bài 6:
Tổng các hệ số của đa thức A(x) khi khai triển sẽ bằng với giá trị của A(x) khi x=1
=>Tổng các hệ số khi khai triển là:
\(A\left(1\right)=\left(3-4+1\right)^{2004}\cdot\left(3+1+1\right)^{2005}=0\)
Help em họ của mình
Bài toán 5. Chứng minh rằng:
Bài toán 6. Tìm tổng các hệ số của đa thức nhận được sau khi bỏ dấu ngoặc trong biểu thức: A(x) = ( 3 - 4x + x2 )2004 .( 3 + 4x + x2 )2005
Bài toán 7. Cho a là số gồm 2n chữ số 1, b là số gồm n + 1 chữ số 1, c là số gồm n chữ số 6. Chứng minh rằng a + b + c + 8 là số chính phương.
Bài khó đến lớp 8 như mình còn ko bít làm thì ai làm hộ bạn đc
\(4S=1-\dfrac{1}{2^2}+\dfrac{1}{2^4}-....+\dfrac{1}{2^{4n-4}}-\dfrac{1}{2^{4n-2}}+...+\dfrac{1}{2^{2000}}-\dfrac{1}{2^{2002}}\\ \Rightarrow4S+S=1-\dfrac{1}{2^2}+\dfrac{1}{2^4}-...+\dfrac{1}{2^{4n-4}}-\dfrac{1}{2^{4n-2}}+...+\dfrac{1}{2^{2000}}-\dfrac{1}{2^{2002}}+\dfrac{1}{2^2}-\dfrac{1}{2^4}+\dfrac{1}{2^6}-...+\dfrac{1}{2^{4n-2}}-\dfrac{1}{2^{4n}}+...+\dfrac{1}{2^{2002}}-\dfrac{1}{2^{2004}}\\ \Rightarrow5S=1-\dfrac{1}{2^{2004}}\\ \Rightarrow S=\dfrac{1}{5}-\dfrac{1}{2^{2004}\cdot5}< \dfrac{1}{5}=0,2\)
Câu 3. Cho 2 đa thức: M(x) = 3x3 + x2 + 4x4 – x – 3x3 + 5x4 + x2 – 6
N(x) = – x2 – x4 + 4x3 – x2 – 5x3 + 3x + 1 + x
a) Thu gọn và sắp xếp các đa thức trên theo luỹ thừa giảm dần của biến, tìm bậc, hệ số cao nhất, hệ số tự do của đa thức M(x).
b) Tính P(x) = M(x) + N(x) ; Q(x) = M(x) – N(x)
c) Tính Q(x) tại x = –2.
d) Chứng minh đa thức H(x) = M(x) – 8x2 + x + 8 không có nghiệm.
a: \(M\left(x\right)=9x^4+2x^2-x-6\)
\(N\left(x\right)=-x^4-x^3-2x^2+4x+1\)
b: \(P\left(x\right)=8x^4-x^3+3x-5\)
\(Q\left(x\right)=10x^4+x^3+4x^2-5x-7\)