Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thùy Chi
Xem chi tiết
Name
Xem chi tiết
Nguyễn Lê Phước Thịnh
10 tháng 5 2022 lúc 22:50

a: Để A là phân số thì 3n+3<>0

hay n<>-1

b: Để A là số nguyên thì \(4n⋮n+1\)

\(\Leftrightarrow n+1\in\left\{1;-1;2;-2;4;-4\right\}\)

hay \(n\in\left\{0;-2;1;-3;3;-5\right\}\)

Thị Loan Đỗ
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 10 2021 lúc 0:08

a: Ta có: \(A=\left(1-\dfrac{2\sqrt{x}-2}{x-1}\right):\left(\dfrac{1}{\sqrt{x}+1}-\dfrac{\sqrt{x}}{x\sqrt{x}+1}\right)\)

\(=\dfrac{x-1-2\sqrt{x}+2}{x-1}:\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\)

\(=\dfrac{x-\sqrt{x}+1}{\sqrt{x}-1}\)

MP40
Xem chi tiết
tiến đạt đặng
Xem chi tiết
Nguyễn Hoàng Minh
7 tháng 12 2021 lúc 21:16

\(a,ĐK:x\ne-1;x\ne-2\\ b,A=\dfrac{\left(x-1\right)\left(x+1\right)}{\left(x+1\right)\left(x+2\right)}=\dfrac{x-1}{x+2}\\ x=2020\Leftrightarrow A=\dfrac{2019}{2022}=\dfrac{673}{674}\\ c,A=0\Leftrightarrow x-1=0\Leftrightarrow x=1\left(tm\right)\)

Hải Yến Lê
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 3 2021 lúc 20:51

a) Ta có: \(A=\left(\dfrac{1}{\sqrt{x}-2}-\dfrac{2\sqrt{x}}{4-x}+\dfrac{1}{2+\sqrt{x}}\right)\left(\dfrac{2}{\sqrt{x}}-1\right)\)

\(=\left(\dfrac{\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\dfrac{2\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\dfrac{\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right)\cdot\left(\dfrac{2}{\sqrt{x}}-\dfrac{\sqrt{x}}{\sqrt{x}}\right)\)

\(=\dfrac{4\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\cdot\dfrac{-\left(\sqrt{x}-2\right)}{\sqrt{x}}\)

\(=\dfrac{-4}{\sqrt{x}+2}\)

Akai Haruma
25 tháng 3 2021 lúc 20:56

Lời giải:

a) 

\(A=\left[\frac{\sqrt{x}+2}{(\sqrt{x}-2)(\sqrt{x}+2)}+\frac{2\sqrt{x}}{(\sqrt{x}-2)(\sqrt{x}+2)}+\frac{\sqrt{x}-2}{(\sqrt{x}-2)(\sqrt{x}+2)}\right].\frac{2-\sqrt{x}}{\sqrt{x}}\)

\(=\frac{\sqrt{x}+2+2\sqrt{x}+\sqrt{x}-2}{(\sqrt{x}-2)(\sqrt{x}+2)}.\frac{2-\sqrt{x}}{\sqrt{x}}=\frac{4\sqrt{x}}{(\sqrt{x}-2)(\sqrt{x}+2)}.\frac{2-\sqrt{x}}{\sqrt{x}}=\frac{-4}{\sqrt{x}+2}\)

b) 

$A< -1\Leftrightarrow \frac{-4}{\sqrt{x}+2}+1< 0$

$\Leftrightarrow \frac{\sqrt{x}-2}{\sqrt{x}+2}< 0$

$\Leftrightarrow \sqrt{x}-2< 0\Leftrightarrow 0\leq x< 4$

Kết hợp với ĐKXĐ suy ra $0< x< 4$

Nguyễn Thanh Hằng
25 tháng 3 2021 lúc 21:01

ĐKXĐ : \(\left\{{}\begin{matrix}x>0\\x\ne4\end{matrix}\right.\)

\(A=\left(\dfrac{1}{\sqrt{x}-2}-\dfrac{2\sqrt{x}}{4-x}+\dfrac{1}{2+\sqrt{x}}\right)\left(\dfrac{2}{\sqrt{x}}-1\right)\)

\(=\left(\dfrac{1}{\sqrt{x}-2}+\dfrac{2\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}+\dfrac{1}{2+\sqrt{x}}\right)\left(\dfrac{2}{\sqrt{x}}-\dfrac{\sqrt{x}}{\sqrt{x}}\right)\)

\(=\dfrac{\sqrt{x}+2+2\sqrt{x}+\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}.\dfrac{2-\sqrt{x}}{\sqrt{x}}\)

\(=\dfrac{4\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}.\dfrac{2-\sqrt{x}}{\sqrt{x}}\)

\(=\dfrac{-2}{\sqrt{x}+2}\)

b/ \(A< -1\)

\(\Leftrightarrow\dfrac{-2}{\sqrt{x}+2}+\dfrac{\sqrt{x}+2}{\sqrt{x}+2}< 0\)

\(\Leftrightarrow\dfrac{\sqrt{x}}{\sqrt{x}-2}< 0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x}>0\\\sqrt{x}-2< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x>0\\x< 4\end{matrix}\right.\)

Vậy..

Hoàng Minh Ngọc
Xem chi tiết
Huyền Nguyễn
Xem chi tiết
Huyền Nguyễn
13 tháng 3 2022 lúc 11:59

bn vô danh giúp mik với ;-;

illumina
Xem chi tiết
Gia Huy
19 tháng 6 2023 lúc 12:54

\(P=A:B=\dfrac{1-\sqrt{x}}{\sqrt{x}-2}:\dfrac{2\sqrt{x}}{\sqrt{x}-2}=\dfrac{1-\sqrt{x}}{2\sqrt{x}}\)

Có: \(\left|P+1\right|< 3P\left(ĐK:x>0\right)\)

\(\Leftrightarrow\left|\dfrac{1-\sqrt{x}}{2\sqrt{x}}+1\right|< 3.\dfrac{1-\sqrt{x}}{2\sqrt{x}}\\ \Leftrightarrow\left|\dfrac{1-\sqrt{x}+2\sqrt{x}}{2\sqrt{x}}\right|< \dfrac{3-3\sqrt{x}}{2\sqrt{x}}\\ \Leftrightarrow\left|\dfrac{\sqrt{x}+1}{2\sqrt{x}}\right|< \dfrac{3-3\sqrt{x}}{2\sqrt{x}}\)

Vì \(\sqrt{x}\ge0\Rightarrow\sqrt{x}+1\ge1\) nên:

\(\left|\dfrac{\sqrt{x}+1}{2\sqrt{x}}\right|< \dfrac{3-3\sqrt{x}}{2\sqrt{x}}\\ \Leftrightarrow\dfrac{\sqrt{x}+1-3+3\sqrt{x}}{2\sqrt{x}}< 0\\ \Leftrightarrow\dfrac{4\sqrt{x}-2}{2\sqrt{x}}< 0\\ \Leftrightarrow\dfrac{2\sqrt{x}-1}{\sqrt{x}}< 0\\ \Rightarrow\left\{{}\begin{matrix}\sqrt{x}>0\\2\sqrt{x}-1< 0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}x>0\\x< \dfrac{1}{4}\end{matrix}\right.\)

\(\Rightarrow0< x< \dfrac{1}{4}\)