Cho biểu thức:
A= x^2- 2x
Tìm x để:
a.A>0:
b.A<0:
c.A=0
cho số thực x thoả mãn 0<x<2. Tìm GTNN của biểu thức:
A= \(\dfrac{4}{2-x}+\dfrac{100}{x}+2021\)
cho A= 12n/3n+3. tìm giá trị của n để:a.A là một phân số. b.A là một số nguyên c. với giá trị nào của stn n thì a có giá trị nhỏ nhất và giá trị nhỏ nhất đó bằng bao hiêu
a: Để A là phân số thì 3n+3<>0
hay n<>-1
b: Để A là số nguyên thì \(4n⋮n+1\)
\(\Leftrightarrow n+1\in\left\{1;-1;2;-2;4;-4\right\}\)
hay \(n\in\left\{0;-2;1;-3;3;-5\right\}\)
cho biểu thức:A= (1+\(\dfrac{2-2\sqrt{x}}{x-1}\)):(\(\dfrac{1}{\sqrt{x}+1}\)-\(\dfrac{\sqrt{x}}{x\sqrt{x}+1}\))với x≥0,x≠1
rút gọn A
Tìm GTLN của A
a: Ta có: \(A=\left(1-\dfrac{2\sqrt{x}-2}{x-1}\right):\left(\dfrac{1}{\sqrt{x}+1}-\dfrac{\sqrt{x}}{x\sqrt{x}+1}\right)\)
\(=\dfrac{x-1-2\sqrt{x}+2}{x-1}:\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\)
\(=\dfrac{x-\sqrt{x}+1}{\sqrt{x}-1}\)
Tính giá trị của biểu thức:A=x^n+1/x^n.giả sử x^2+x+1=0
Bài 10: Cho biểu thức:A=x^2-1/x^2+3x+2
a, Tìm ĐKXĐ của x
b, Tính giá trị của phân thức tại x=2020
c, Tính giá trị của x để A=0
\(a,ĐK:x\ne-1;x\ne-2\\ b,A=\dfrac{\left(x-1\right)\left(x+1\right)}{\left(x+1\right)\left(x+2\right)}=\dfrac{x-1}{x+2}\\ x=2020\Leftrightarrow A=\dfrac{2019}{2022}=\dfrac{673}{674}\\ c,A=0\Leftrightarrow x-1=0\Leftrightarrow x=1\left(tm\right)\)
Cho biểu thức:
A=\(\left(\dfrac{1}{\sqrt{x}-2}-\dfrac{2\sqrt{x}}{4-x}+\dfrac{1}{2+\sqrt{x}}\right)\left(\dfrac{2}{\sqrt{x}}-1\right)\)(với x>0;x\(\ne\)4)
a.Rút gọn A
b.Tìm x để A<-1
a) Ta có: \(A=\left(\dfrac{1}{\sqrt{x}-2}-\dfrac{2\sqrt{x}}{4-x}+\dfrac{1}{2+\sqrt{x}}\right)\left(\dfrac{2}{\sqrt{x}}-1\right)\)
\(=\left(\dfrac{\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\dfrac{2\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\dfrac{\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right)\cdot\left(\dfrac{2}{\sqrt{x}}-\dfrac{\sqrt{x}}{\sqrt{x}}\right)\)
\(=\dfrac{4\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\cdot\dfrac{-\left(\sqrt{x}-2\right)}{\sqrt{x}}\)
\(=\dfrac{-4}{\sqrt{x}+2}\)
Lời giải:
a)
\(A=\left[\frac{\sqrt{x}+2}{(\sqrt{x}-2)(\sqrt{x}+2)}+\frac{2\sqrt{x}}{(\sqrt{x}-2)(\sqrt{x}+2)}+\frac{\sqrt{x}-2}{(\sqrt{x}-2)(\sqrt{x}+2)}\right].\frac{2-\sqrt{x}}{\sqrt{x}}\)
\(=\frac{\sqrt{x}+2+2\sqrt{x}+\sqrt{x}-2}{(\sqrt{x}-2)(\sqrt{x}+2)}.\frac{2-\sqrt{x}}{\sqrt{x}}=\frac{4\sqrt{x}}{(\sqrt{x}-2)(\sqrt{x}+2)}.\frac{2-\sqrt{x}}{\sqrt{x}}=\frac{-4}{\sqrt{x}+2}\)
b)
$A< -1\Leftrightarrow \frac{-4}{\sqrt{x}+2}+1< 0$
$\Leftrightarrow \frac{\sqrt{x}-2}{\sqrt{x}+2}< 0$
$\Leftrightarrow \sqrt{x}-2< 0\Leftrightarrow 0\leq x< 4$
Kết hợp với ĐKXĐ suy ra $0< x< 4$
ĐKXĐ : \(\left\{{}\begin{matrix}x>0\\x\ne4\end{matrix}\right.\)
\(A=\left(\dfrac{1}{\sqrt{x}-2}-\dfrac{2\sqrt{x}}{4-x}+\dfrac{1}{2+\sqrt{x}}\right)\left(\dfrac{2}{\sqrt{x}}-1\right)\)
\(=\left(\dfrac{1}{\sqrt{x}-2}+\dfrac{2\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}+\dfrac{1}{2+\sqrt{x}}\right)\left(\dfrac{2}{\sqrt{x}}-\dfrac{\sqrt{x}}{\sqrt{x}}\right)\)
\(=\dfrac{\sqrt{x}+2+2\sqrt{x}+\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}.\dfrac{2-\sqrt{x}}{\sqrt{x}}\)
\(=\dfrac{4\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}.\dfrac{2-\sqrt{x}}{\sqrt{x}}\)
\(=\dfrac{-2}{\sqrt{x}+2}\)
b/ \(A< -1\)
\(\Leftrightarrow\dfrac{-2}{\sqrt{x}+2}+\dfrac{\sqrt{x}+2}{\sqrt{x}+2}< 0\)
\(\Leftrightarrow\dfrac{\sqrt{x}}{\sqrt{x}-2}< 0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x}>0\\\sqrt{x}-2< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x>0\\x< 4\end{matrix}\right.\)
Vậy..
Tính giá trị biểu thức:A=x33+x2y-2x2-xy-y2+3y+x-5. Biết x+y-2=0
x-1/2=2y+1/5=3x-4y-5/2x
tìm x, y
Cho hai biểu thức:
A = \(\dfrac{1-\sqrt{x}}{\sqrt{x}-2}\) và B = \(\dfrac{11\sqrt{x}+6}{x-4}+\dfrac{2\sqrt{x}}{\sqrt{x}+2}-\dfrac{3}{\sqrt{x}-2}\) với \(x>0;x\ne4\)
Biết biểu thức B sau khi thu gọn được B = \(\dfrac{2\sqrt{x}}{\sqrt{x}-2}\)
c) Đặt P = A : B. Tìm tất cả các giá trị của \(x\) thỏa mãn \(\left|P+1\right|< 3P\)
\(P=A:B=\dfrac{1-\sqrt{x}}{\sqrt{x}-2}:\dfrac{2\sqrt{x}}{\sqrt{x}-2}=\dfrac{1-\sqrt{x}}{2\sqrt{x}}\)
Có: \(\left|P+1\right|< 3P\left(ĐK:x>0\right)\)
\(\Leftrightarrow\left|\dfrac{1-\sqrt{x}}{2\sqrt{x}}+1\right|< 3.\dfrac{1-\sqrt{x}}{2\sqrt{x}}\\ \Leftrightarrow\left|\dfrac{1-\sqrt{x}+2\sqrt{x}}{2\sqrt{x}}\right|< \dfrac{3-3\sqrt{x}}{2\sqrt{x}}\\ \Leftrightarrow\left|\dfrac{\sqrt{x}+1}{2\sqrt{x}}\right|< \dfrac{3-3\sqrt{x}}{2\sqrt{x}}\)
Vì \(\sqrt{x}\ge0\Rightarrow\sqrt{x}+1\ge1\) nên:
\(\left|\dfrac{\sqrt{x}+1}{2\sqrt{x}}\right|< \dfrac{3-3\sqrt{x}}{2\sqrt{x}}\\ \Leftrightarrow\dfrac{\sqrt{x}+1-3+3\sqrt{x}}{2\sqrt{x}}< 0\\ \Leftrightarrow\dfrac{4\sqrt{x}-2}{2\sqrt{x}}< 0\\ \Leftrightarrow\dfrac{2\sqrt{x}-1}{\sqrt{x}}< 0\\ \Rightarrow\left\{{}\begin{matrix}\sqrt{x}>0\\2\sqrt{x}-1< 0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}x>0\\x< \dfrac{1}{4}\end{matrix}\right.\)
\(\Rightarrow0< x< \dfrac{1}{4}\)