16\(x^3\)-12\(x^2\)+y+1=0
tìm x,y,z
a) 12/16=-x/4 =21/y-z/80
b) 1/3 . x+2/5.(x-1)=0
c) (2.x-3).(6-2.x)=0
d)-2/3-1/3.(2.x-5)=3/2
e)(3.x-1).(-1/2.x+5)=0
f) (2.x+3/5)^2-9/25=0
trả lời ngay cho mình nhé
bài 1 tìm x thuộc Z
a) x^2+2.x=0
b) (-2.x).(-4.x)+28=100
c) 5.x.(-x)^2+1=6
d) 3.x^2+12.x=0
e) 4.x.3=4.x
bài 2: tìm x,y thuộc Z
a) (x+2).(x-1)=0
b) (y+1).(x.y-1)=3
c) 2.x.y+x-6.y=15
d) x.y+2.x-y+9
e)3.x.y-y=-12
g) 3.x.y-3.x-y=0
h) 5.x.y+5.x+2.y =-16
Bài 1:
a, \(x^2\) +2\(x\) = 0
\(x.\left(x+2\right)\) = 0
\(\left[{}\begin{matrix}x=0\\x+2=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)
\(x\) \(\in\) {-2; 0}
b, (-2.\(x\)).(-4\(x\)) + 28 = 100
8\(x^2\) + 28 = 100
8\(x^2\) = 100 - 28
8\(x^2\) = 72
\(x^2\) = 72 : 8
\(x^2\) = 9
\(x^2\) = 32
|\(x\)| = 3
\(\left[{}\begin{matrix}x=-3\\x=3\end{matrix}\right.\)
Vậy \(\in\) {-3; 3}
c, 5.\(x\) (-\(x^2\)) + 1 = 6
- 5.\(x^3\) + 1 = 6
5\(x^3\) = 1 - 6
5\(x^3\) = - 5
\(x^3\) = -1
\(x\) = - 1
d, 3\(x^2\) + 12\(x\) = 0
3\(x.\left(x+4\right)\) = 0
\(\left[{}\begin{matrix}x=0\\x+4=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=0\\x=-4\end{matrix}\right.\)
Vậy \(x\) \(\in\) {-4; 0}
e, 4.\(x.3\) = 4.\(x\)
12\(x\) - 4\(x\) = 0
8\(x\) = 0
\(x\) = 0
bài 1 : tìm x
a, 2*x4 + 3*x2 - 16*x - 24 = 0
bài 2 : tìm x,y biết
4*x^2 + 9*y^2 - 12*x - 32*y - 2*x*y + 44 = 0
a) \(2x^4+3x^3-16x-24=0\)
\(\left(2x^4+3x^3\right)-\left(16x+24\right)=0\)
\(x^3.\left(2x+3\right)-8\left(2x+3\right)=0\)
\(\left(x^3-8\right)\left(2x+3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x^3-8=0\\2x+3=0\end{cases}}\Rightarrow\orbr{\begin{cases}x^3=8\\2x=-3\end{cases}}\Rightarrow\orbr{\begin{cases}x=2\\x=\frac{-3}{2}\end{cases}}\)
vậy \(\orbr{\begin{cases}x=2\\x=-\frac{3}{2}\end{cases}}\)
4, tim x,y thuoc z
|y-42|+|12-y|=0
|x+5|+(y-3)^2=0
(x^2-16)^2+|y-4|<0
Tìm x,y biết x,y thuộc Z:
1> (x-2).(2y+1)=17
2> x.(y-3)=-12
3> (x-1).(y+2)=7
4>xy+2x+2y=-16
5> xy-3x-y=0
bài 6 quy dồng mẫu thức các phân tử a)1 phần x+1 và 6 phần x-x mũ 2 với x khác 0 và x khác - hoặc + 1 b) y+5 phần y mũ 2 +8y +16 và y phần 3 y+12 với y khác -4
Tìm các số nguyên x, y sao cho:
a) |x+7|+|2y-12|=0
b) |x-(-12)+|y|=0
c) |x+12-8|+|x+y+1|=0
d) |x+y|+|x+16-12|=0
a) \(|x+7|+|2y-12|=0\)
Vì \(\hept{\begin{cases}|x+7|\ge0;\forall x,y\\|2y-12|\ge0;\forall x,y\end{cases}}\)\(\Rightarrow|x+7|+|2y-12|\ge0;\forall x,y\)
Do đó \(|x+7|+|2y-12|=0\)
\(\Leftrightarrow\hept{\begin{cases}|x+7|=0\\|2y-12|=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-7\\y=6\end{cases}}\)
Vậy ...
các phần sau tương tự
a) Ta có :
\(\left|x+7\right|\ge0\)
\(\left|2y-12\right|\ge0\)
Để |x+7| + | 2y - 12| = 0
=> x +7 = 0 và 2y - 12= 0
x = 7 2y = 12
y = 12 : 2
y = 6
Vậy x = 7 ; y = 6
bài 7
a,( x-1).(y+2)=7 b,x.(y-3)=-12
c,xy-3x-y=0 d,xy+2x+2y=-16
a,
\(\left(x-1\right)\cdot\left(y+2\right)=7\)
Lập bảng ta có :
x - 1 | 1 | 7 | -1 | -7 |
y + 2 | 7 | 1 | -7 | -1 |
x | 2 | 8 | 0 | -6 |
y | 5 | -1 | -8 | -3 |
Tìm x,y biết :
a) 1-(5/3/8+x-7/5/24): 16/2/3=0
b) (1/6+2/1/12-10,75).x-7= (2/5+3/8-2,225): 0,1
người ta ko bt thì hỏi , đừng có mak ns mấy câu vô văn hóa thế nhá